通用变频器应用的故障与对策

最新更新时间:2012-03-24来源: 电子发烧友关键字:变频器应用  故障  对策 手机看文章 扫描二维码
随时随地手机看文章

 交流变频速以其节能显著、保护完善、控制性能好、过载能力强、使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流。怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成人们关注的焦点。现结合工程应用中的故障实例,对变频器在应用中普遍存在的问题进行分析。

  一、故障实例

  1、误操作故障

  山东铝业公司水泥厂 7#水泥回转窑篦式冷却机设计选用两台Y250M-830kW电动机分别传动两级篦床,变频调速控制,其控制原理如图1所示。

  

水泥回转窑篦式冷却机控制原理图

 

  图中VVVF是日产富士FRNO37P7-4EX57kVA通用变频频器,装于低压配电室内,其电源接触器及运转命令上冷却机现场和控制室两地操作,KA是篦冷机与破碎机联锁触点。变频器系统试车时,因工艺需要,操作人员在主控室操作SB4断开变频器电源接触器KM,使处于集中控制的篦冷机停车。

  重新开车时,两台变频器均进入OH2(外部故障)闭锁状态,故障历史查询显示OH2和LU(低电压),检查端子THR随联接良好,电源电压正常,按RESET键复位无效,测量主电路直流电压为518V。经分析故障前篦冷机工作于集中控制状态,参与系统联锁,操作员停变频器电源实现停车时,计算机进行内部数据读操作并获取正转指令,但此时主回路直流电压尚未建立,CPU检测后封锁输出,发出OH2故障信号,因此,导致故障的真正原因是错误操作,而非现场技术人员认为的由电源接触器频繁起动变频器所致。

  故障原因明确以后,针对现场情况规定了操作程序,开停车使用控制室内的S2(集中控制时)或SB5、SB6开停车按钮,将集中控制室内变频器电源接触器控制按钮SB3、SB4用胶带贴封,仅当停机检修时启用,以避免误操作现象出现,系统运行正常。

  2、使用条件造成的故障

  一家油田某采区所用的九台变频器在短期内烧毁三台,故障都是变频器控制的变压器烧毁导致主板等部件损坏。据了解,该地区电网电压有时高达 480V,远超过手册规定的+10%的电压上限,使绝缘裕度较小的控制变压器烧毁。这是一个变频器用于严重过压条件下而损坏的曲型事例。

  因此,使用变频器时,应对使用现场的电网质量、环境温度、粉尘、干扰等条件认真调查,外部条件不能满足要求时应采取有效措施加以解决。

 二、变频器应用中的常见问题及处理方法

  1、变频器电源开关的设置与控制

  变频器用户手册规定,在电源与主电路端子之间,一定要接一个开关,这是为了确保检修安全。对这一点,一般用户能够按手册要求做。但容易忽视的是手册还建议在开关后装设电磁接触器,其目的是在变频器进入故障保护状态时能及时切断电源,防止故障扩散。在实际使用中,有的用户没有安装,有的使用不合理;如图 1方案中电源接触器仅被用来实现远地停送电及变频器的过负荷保护;有些方案则仅用于起、停电动机。这都是不恰当的。

  由于变频器价格较高,使用时应在电源接触器控制回路中串接变频器故障报警接触器动断触点控制回路中串接变频器故障报警接链接触器动断触点(如富士P7/G7系列的B30、C30触点),这对大容量变频器尤为重要。

  变频器电源进线端一定要装设开关,使用中宜优选刀熔开关,该开关有明显的断点,集电源开关、隔离开关、应急开关和是路保护于一体,性能优于目前采用较多的单一熔断器、刀开关或自动空气开关等方案。对大容量变频器应选配快速熔断器以保护整流模块。

  变频器电源侧设置接触器应选配快速熔断器以保护整流模块。

  变频器电源侧设置接触器并参与故障联锁时,应将控制电源辅助输入端子接于接触器前,以保证变频器主电路断电后,故障显示和集中报警输出信号得以保持,便于实现故障检索及诊断。

  2、不应用电源侧接触器频繁起、停电动机

  实际应用中,有许多控制方案设置外围电路控制电源侧接触器实现系统软起动特性,图2是某杂志一篇文章推荐的日产三垦(SANKEK)变频器的控制方案。由图可知,该方案电动机起动时按SB2,其触点闭合,KA1得电,其动合触点分别发出变频器运行和时间继电器KT的激励命令,KT延时断开动合触点提供继电器KA2激励命令,KA2动合触点控制KM吸合,变频器得电起动电动机。

  

SANKEK变频器的控制原理图

 

  停车时按SB1发出停车命令,KA1断电,其动合触点复位,取消运行命令并使KT断电,KT动合触点延时20s复位,电源接触器KM断电,实现当KM起动时,先闭合KA1,停止时先断开KA1的办法,可达到起动、停止软特性,从而避免电动机反馈电压侵入变频器。

  上述方案建议利用电源接触器直接起动变频器来实现电动机起动、停止的软特性是错误的。由图 3可知,当电压型交-直-交变频器通电时,主电路将产生较大充电电流,频繁重复通断电,将产生热积累效应,引起元件的热疲劳,缩短设备寿命。因此上述方案不适用于频繁起动的设备。

  

 

  对不频繁起动的设备也无优越性(某些大容量变频器根本无法起动,如例1所述),因为变频器本身具有优越的控制性能,实现软起动特性应优先考虑利用正、反转命令和通过加、减速速时间设定实现,无谓地增加许多外围电路器件,不但浪费资金而且降低了系统的可靠性,大大降低了响应速度,加大维护工作量,增加损耗,是不足取的。

3、电动机过载保护宜优先选择电子热继电器

  一部分专业人员认为,变频器内部的过载保护只是为保护其自身而设,对电动机过载保护不适用,为了保护电动机,必须另设热继电器。在实际应用中,笔者所见各种变频调速控制方案也绝大多数在电路的不同位置设置了热继电器,以完成所控单台电动机的过负荷保护,这显然又是一种误解。

  对一台变频器控制一台标准四极电动机的控制方案而言,使用变频器电子热过载继电器保护电动机过载,无疑要优于外加热继电器,对普通电动机可利用其矫正特性解决低速运行时冷却条件恶化的问题,使保护性能更可靠。尤其是新型高机能变频器(如富士 9S系列)现已在用户手册中给出设定曲线,用户可根据工艺条件设定。通常,考虑到变频器与电动机的匹配,电子热过载继电器可在50%~105%额定电流范围内选择设定。

  只有在下列情况时,才用常规热继电器代替电子热继电器:

  -149; 所用电动机不是四极电动机-149; 使用特殊电动机(非标准通用电动机)-149; 一台变频器控制多台电动机-149; 电动机频繁起动

  但是,如果用户有丰富的运行经验时,笔者仍建议通过电子热继电器的合理设定(引入校正系数)来完成单台电动机变频调速的过载保护。

  当变步器选用外部热继电器进行电动机过载保护时,热继电器应装设于变频器输出侧,常见的装于输入侧的方案起不到保护作用(变频器的变频变压特性使 其低频时输入电流远远小于输出电流)。过载保护应根据设备工艺要求情况,采用变频器停止命令(断开 CM)或空转停车(断开BX)命令实现停车,不宜通过电源接触器实现。

 4、变频器与电动机间不宜装设接触器

  装设于变频器和电动机间的接触器在电动机运行时通断,将产生操作过电压,对变频器造成损害,因此,用户手册要求原则上不要在变频器与电动机之间装设接触器。但是,当变频器用于下列情况时,仍有必要设置:

  当用于节能控制的变频调速系统时常工作于额定转速,为实现经济运行需切除变频器时。

  参与重要工艺流程,不能长时间停运,需切换备用控制系统以提高系统可靠性时。

  一台变频器控制多台电动机(包括互为备用的电动机)时。变频器输出侧设置电磁时,设计外围电路应避免接触器在变频器有输出时动作,任何时候严禁将电源接入变频器输出端。

  目前,有些用户为了方便测试负荷电缆和电动机绝缘,在变频器输出侧设置自动空气开关,用以在测试时切除变频器,该法弊大于利。由于变频器输出电缆(线)要求选用屏蔽电缆或穿管敷设,缆线故障几率很小,通常情况下测量电动机及电缆绝缘时,可选用铅丝或软铜线将变频器输入、输出、直流电抗器和制动单元联接端子可靠短接后进行测试,仅在需要测量电缆相间绝缘时拆线检测,确无必要增加投资,否则还要采取可靠措施,防止在运行中误操作。

  5、电流检测时电汉互感器的设置及电流表的选择

  由于设计人员或用户容易忽视变频器输出频率的变化特性,在电流检测及仪表选型上经学出现错误。变频器输出侧电流测量应使用电磁经系仪表,以获得所需的测量精度。

  例如,某杂志刊登的《一起变频器不能复位的故障处理》一文,提出变频器输出侧不能使用普通电流互感器,这是错误的论点。在变频器输出侧使用普通电流互感器是可以完成输出电流检测的。由电流互感器铁心磁通密度计算公式 Bmake=K2/4.44fSmW2可知,铁心的磁通密度与交流电流频率的变化成反比,忽略次要因素时,其电流误差(即变化误差)和相位误差可看作与电流频率变化成反比,只是当电流频率超过1kHz时,铁心温度会增高。但是,由于互感器正常运行时激磁电流设计得很小(主要为了减小误差),因此,普通电流互感器用于50Hz频率附近时,其电流误差是很小的。

  通过实际校验对比可知,当变频器输出频率在10~50Hz之间变化时,电磁系电流表指示误差很小,实测误差在1.27%以下,并与电流频率变化成反比(以变频器输出电流指示为基准),能够满足输出电流监视的要求。此外,尤其是当变频调速系统驱动负载变化不太大的往复运动设备时,由于设备传动力矩的周期性变化,使变频器输出电流产生一定波动,变频器的LED数码显示电流值跳字严重,造成观察读数困难,采用模拟电流表可有效地解决这个问题。

  应当注意的是,使用指针式电流表测量变频器输出侧电流时,必须选择电磁经系仪表(手册通常称作动铁式),使用时应严格按用户手册的规定选择安装,以保证应有的精度。如选用整流系仪表(该错误非常普遍)时,经实测在 19~50Hz区间,指示误差为69.7%~16.66%,且为负偏差。

  此外,由于变频器的输入电流一般不大于输出电流,因此,输入侧设置电流监视意义不大,一般有信号灯指示电源即可,如电压不稳时可设电压表监视。大容量变频器低频运行时,其输入侧电流表可能无指示。

关键字:变频器应用  故障  对策 编辑:探路者 引用地址:通用变频器应用的故障与对策

上一篇:一种全桥式非隔离光伏并网逆变器
下一篇:抑制变频器中的微浪涌电压方法

推荐阅读最新更新时间:2023-10-18 16:33

iOS版QQ2012出现严重故障 连续收到多条相同回复
6月5日消息,今日有网友发现,iOS版QQ2012出现故障,用户在接收回复信息时候,会出现连续收到多条相同回复的情况。如下图:   截止目前为止,尚未知该故障是由什么原因引起。
[手机便携]
iOS版QQ2012出现严重<font color='red'>故障</font> 连续收到多条相同回复
[发那科]FANUC机器人常见故障代码及故障排除方法
1 伺服-001操作面板紧 急停止。 SRVO-001 Operator panel E-stop [现 象]: 按下了操作箱/操作面板的紧急停止按扭。 SYST-067 面板 HSSB 断线报 警同时发生,或者配电盘上的 LED(绿 色)熄灭时 ,主板( JRS11) -配电盘 ( JRS11)之间 的通信有异常,可能是因为电缆 不良、配电盘 不良、或主板不良。 [对 策 1]:解除操作箱/操作面板的紧急停止按扭。 [对 策 2]:确认 面板 开关板( CRM51 )和紧急停止按扭之间的电缆是否断线,如果断线, 则更换电缆 。 [对 策 3]:如果在紧急停止解除状态下触点没有接好,则是紧急停止按扭的故障。逐一更换开关单元或操作
[机器人]
汽车安全设计自动防故障功能
安全气囊在汽车辅助约束系统(SRS)中发挥着关键的作用。目前,乘用车安装安全气囊已经成为一种标準。大家都知道在汽车产生碰撞时,安全气囊和安全带可降低车内人员头部和上身撞击车内元件的机率。它们还可透过使撞击力更均匀地分佈来降低人员受伤的风险。但是现在,许多人已经认识到能给人带来安全的辅助约束系统也有可能会危及车内人员的生命安全。因此,在开发安全系统时,必须全面考虑系统的各种特性,以确保达到所需的安全水準。为了解决这方面的问题,英飞凌开发出了具有丰富特性的气囊触发晶片,可帮助系统实现自动故障防护功能。 亚洲的汽车安全气囊系统市场预计将继续成长,这主要得益于中国市场的成长。未来五年,该市场的增幅将达到25%。此外,韩国出口欧美的汽车
[嵌入式]
SA8281型SPWM波发生器原理及在变频器中的应用
1 引言 脉宽调制技术通过一定的规律控制开关元件的通断,来获得一组等幅而不等宽的矩形脉冲波形,用以近似正弦电压波形。脉宽调制技术在逆变器中的应用对现代电力电子技术、现代调速系统的发展起到极大的促进作用。 近几年来,由于场控自关断器件的不断涌现,相应的高频SPWM(正弦脉宽调制)技术在电机调速中得到了广泛应用。SA8281是MITEL公司推出的一种用于三相SPWM波发生和控制的集成电路,它与微处理器接口方便,内置波形ROM及相应的控制逻辑,设置完成后可以独立产生三相PWM波形,只有当输出频率或幅值等需要改变时才需微处理器的干预,微处理器只用很少的时间控制它,因而有能力进行整个系统的检测、保护和控制等。基于SA8281和89C
[单片机]
SA8281型SPWM波发生器原理及在<font color='red'>变频器</font>中的<font color='red'>应用</font>
天然气流量计的常见故障分析
天然气流量计传感器与流量变送器之间的接线不正确。应该对接线,并正确牢固连接。 流体流向与流量计传感器集流管上标志的流动方向不一致。或组态流量变送器时将流量方向设置不当,造成误差。应检查有关设置参数和安装位置,使符合规定要求。对检测双向流的应用场合,应设置流量方向为双向。 安装不合理,造成非满管运行或被测流体被汽化。为此,应改变管路走向,使流体满管运行。或加大流速,提高压力,消除流体汽化。 流量变送器未进行组态,使信号丢失。应检查并全面进行特征化组态示值。 安装环境有不稳定热源,造成天然气流量计工作不稳定。可采用隔热措施,减小外部环境影响。使用不当引入误差。 线圈开路或短路。可断电后检查线圈阻值,右侧或左侧检测线圈的
[测试测量]
天然气流量计的常见<font color='red'>故障</font>分析
导弹测试设备故障诊断专家系统的设计应用
导弹测试设备   该测试设备是导弹武器系统中一个很重要的组成部分,承担着对导弹的性能、参数等进行检测,确定导弹品质是否达到技术要求的任务,是决定导弹能否成功发射的重要关口。其主要测试内容包括对导弹系统的硬件、软件进行全面检查;检查导弹系统内各仪器连接是否正确,工作是否匹配;检查导弹系统与其他分系统连接是否正确,工作是否匹配;检查系统飞行软件运行的可靠性等。其测试结果是分析判断导弹系统性能的重要依据。   导弹测试设备主要由地测微机、采集控制器、监控装置、电源/模拟器等组成,它们之间都是通过I/O总线和专用总线接口相连。模拟量测试电路、数字量测试电路、开关量测试电路和其他电路通过测控总线和地测微机连接。其结构框图如图1所示。
[测试测量]
导弹测试设备<font color='red'>故障</font>诊断专家系统的设计<font color='red'>应用</font>
对一张奇特的故障电流录波图的分析
通过对一张“故障电流录波图”中短路电流数值和相位变化的分析,从多方面分析其变化的原因,总结出了分析这种特殊的电力系统事故的经验和方法。 关键词 : 电力系统事故;故障电流;录波图 The Analysis Of An Unusual Fault Current Recorded Diagram Zhu Baolin (Shaoguan Electrac Power Group,Guangdong) Abstract : Based on the analysis about short-circuit current and phase deviation of an fault current r
[电源管理]
对一张奇特的<font color='red'>故障</font>电流录波图的分析
电池的损伤机理与故障预警
摘要:电池损伤理论比电池老化理论更适用于电池故障的分析研究。研究了在电池组中微损伤的成因。分析了电池组中损伤叠加直至“断裂型”失效的过程,得出现有电池安全体系存在系统性隐患的重要结论。阐述了从损伤留痕角度选择内阻作为预警参数的理由。提出互比较内阻增量是电池故障预警技术工程实用化的核心概念。 关键词:电池损伤;损伤留痕;互比较内阻增量;电池故障预警 引言 电池组突发失效是后备供电系统中的一大安全隐患,如何预防电池组突发失效是电池维护技术中具有挑战性的课题。目前,电池组突发失效所呈现出的不可预知性成为了研究电池故障预警技术的原动力。实现电池故障预警的关键是寻找最佳预警参数,显然,最佳预警参数需要具备以下3个特点,即与电池故障的高
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved