基于AD7793的完整热电偶测量系统

最新更新时间:2012-03-25来源: 21IC中国电子网关键字:AD7793  完整热电偶  测量系统 手机看文章 扫描二维码
随时随地手机看文章

电路功能与优势
图1所示电路是一个基于24位Σ-Δ型ADC AD7793 的完整热电偶系统。AD7793是一款适合高精度测量应用的低功耗、低噪声、完整模拟前端,内置PGA、基准电压源、时钟和激励电流,从而大大简化了热电偶系统设计。系统峰峰值噪声约为0.02°C。
 
AD7793的最大功耗仅500 μA,因而适合低功耗应用,例如整个发送器的功耗必须低于4 mA的智能发送器等。AD7793还具有关断选项。在这种模式下,整个ADC及其辅助功能均关断,器件的最大功耗降至1 μA。
 
AD7793提供一种集成式热电偶解决方案,可以直接与热电偶接口。冷结补偿由一个热敏电阻和一个精密电阻提供。该电路只需要这些外部元件来执行冷结测量,以及一些简单的R-C滤波器来满足电磁兼容性(EMC)要求。
 

图1. 带冷结补偿的热电偶测量系统(原理示意图:未显示去耦和所有连接)
 
电路描述

本电路使用T型热电偶。该热电偶由铜和康铜构成,温度测量范围为−200°C至+400°C,产生的温度相关电压典型值为40 μV/°C。
 
热电偶的传递函数不是线性的。在0°C至+60°C的温度范围,其响应非常接近线性。但是,在更宽的温度范围内,必须使用一个线性化程序处理。
 
测试电路不包括线性化功能,因此,本电路的有用测量范围是0°C到+60°C。在该温度范围内,热电偶产生0 mV至2.4 mV的电压。内部1.17 V基准电压用于热电偶转换。因此,AD7793的增益配置为128。
 
AD7793采用单电源供电,热电偶产生的信号必须被偏置到地以上,从而处于该ADC支持的范围。对于128倍的增益,模拟输入端的绝对电压必须在GND + 300 mV至AVDD – 1.1 V范围内。
 
AD7793片上集成的偏置电压发生器偏置热电偶信号,使其共模电压为AVDD/2,确保以相当大的裕量满足输入电压限值要求。
 
热敏电阻在+25°C时的值为1 kΩ,0°C时的典型值为815 Ω,+30°C时的典型值为1040 Ω。假设0°C至30°C的传递函数为线性,则冷结温度与热敏电阻R之间的关系为:
 
冷结温度= 30 × (R – 815)/(1040 – 815)
 
AD7793的1 mA激励电流用于为热敏电阻和2 kΩ精密电阻供电。基准电压利用该2 kΩ外部精密电阻产生。这种架构提供一种比率式配置,激励电流用于为热敏电阻供电,并产生基准电压。因此,激励电流值的偏差不会改变系统的精度。
 
对热敏电阻通道进行采样时,AD7793以1倍的增益工作。对于+30°C的最大冷结温度,热敏电阻上产生的最大电压为1 mA × 1040 Ω = 1.04 V。
 
热敏电阻的选择条件是:热敏电阻上产生的最大电压乘以PGA增益的结果小于或等于精密电阻上产生的电压。
对于ADC_CODE的转换值,相应的热敏电阻值R等于:
 
R = (ADC_CODE – 0x800000) × 2000/223
 
还需要考虑AD7793 IOUT1引脚的输出顺从电压。使用1 mA激励电流时,输出顺从电压等于AVDD – 1.1 V。从上述计算可知,电路满足这一要求,因为IOUT1的最大电压等于精密电阻上的电压加上热敏电阻上的电压,等于2 V + 1.04 V = 3.04 V。
 
AD7793以16.7 Hz的输出数据速率工作。每读取10个热电偶转换结果,就读取1个热敏电阻转换结果。相应的温度等于:
 
温度 = 热电偶温度 + 冷结温度
 
AD7793的转换结果由模拟微控制器ADuC832 处理,所得的温度显示在LCD显示器上。
 
该热电偶设计采用6 V(2节3 V锂电池)电池供电。一个二极管将6 V电压降至适合AD7793和模拟微控制器ADuC832的电平。ADuC832电源与AD7793电源之间有一个RC滤波器,用以降低进入AD7793的电源数字噪声。
 
图2显示了T型热电偶上产生的电压与温度的关系。圆圈内的区域是从0°C到+60°C,该区域内的传递函数接近线性。
 

图2. 热电偶电动势与温度的关系
 
[page]当系统处于室温时,热敏电阻应指示室温的值。热敏电阻指示的是相对于冷结温度的相对温度,即冷结(热敏电阻)与热电偶的温差。因此,在室温时,热电偶应指示0°C。
 
如果将热电偶放在一个冰桶中,热敏电阻仍旧测量环境(冷结)温度。热电偶应指示热敏电阻值的负值,使得总温度等于0。
 
最后,对于16.7 Hz的输出数据速率和128倍的增益,AD7793的均方根噪声等于0.088 μV。峰峰值噪声等于:
6.6 × 均方根噪声 = 6.6 × 0.088 μV = 0.581 μV
 
如果热电偶的灵敏度恰好为40 μV/°C,则热电偶的温度测量分辨率为:
0.581 μV ÷ 40 μV = 0.014°C
 
图3所示为实际的测试板。系统评估如下:分别在室温时以及将热电偶放入冰桶的情况下,测量热敏电阻温度、热电偶温度和分辨率。结果如表1所示。
 
图3. 采用AD7793的热电偶系统
 


从表1可知,热电偶报告的温度正确,热敏电阻则有0.3°C的误差。这是未包括线性化处理时的系统精度。如果对热电偶和热敏电阻进行线性化处理,系统精度将会提高,系统将能测量更宽的温度范围。
 
如果每读取10次就计算一次最小与最大温度读数之差,则用温度表示的峰峰值噪声为0.02°C。因此,实际的峰峰值分辨率非常接近期望值。
 
常见变化
AD7793是一款低噪声、低功耗ADC。其它合适的ADC有 AD7792 和 AD7785,这两款器件具有与AD7793相同的特性组合,但AD7792为16位ADC,AD7785为20位ADC。
 
电路评估与测试
测试数据利用图3所示测试板获得。该系统的完整文档位于CN-0206设计支持包中。

 

关键字:AD7793  完整热电偶  测量系统 编辑:冰封 引用地址:基于AD7793的完整热电偶测量系统

上一篇:MOSFET结构及其工作原理详解
下一篇:MOSFET门极驱动电压的优化

推荐阅读最新更新时间:2023-10-18 16:34

海德汉机床检测和验收测试测量系统
机床性能,例如是否符合公差、表面形状等,基本取决于机床运动部件的动态和静态精度。因此,对精密机床,必须测量和补偿运动偏差。机床检测指南和标准(ISO 230-2,ISO 230-3和ISO 230-4和VDI/DGQ Directive 3441)规定了动态和静态偏差的测量方法。机床常规检测和验收测试基本上只限于机床无负载时的几何结构,对数控机床只限于测量位置处的精度。由于加工结果取决于机床名义轮廓和大加速度时的动态偏差,因此需要检测精加零件尺寸精度以确定机床的动态性能。现在,海德汉的KGM 181和VM 182测量系统可以直接测量动态和静态偏差情况。这种直接检测方法较只测量加工结果的优点是它能排除机床本身的影响和能区分不同
[测试测量]
基于虚拟仪器的运动位移测量系统的实现
0 引言 气动人工肌肉也称气动人工肌肉驱动器(Pneumatic Musecle Actuator,PMA),其研究始于20世纪50代,近几年,在国内也得到了广泛的研究与应用。气动人工肌肉响应快、可靠性高,同时拥有柔性而且轻盈,这使得它对人类来说,比其他的驱动器更安全。随着机器人技术的发展需求,气动人工肌肉得到了广泛的研究。目前人工肌肉运动位移的测量主要通过在肌肉末端连接一个滑动变阻器,再通过检测变阻器两端的电压来完成,但是这种方法要求有高精度的变阻器,同时,这种方法对人工肌肉的运动也会造成一定的影响,所以,实验结果往往不很理想。本文在虚拟仪器平台下,采用视觉跟踪与图像处理方法,来完成对目标位移的测量。 1 硬件结构设计
[测试测量]
基于虚拟仪器的运动位移<font color='red'>测量系统</font>的实现
基于CC2480的土壤温度和水分梯度测量系统
  引言   长久以来,土壤的温度、水分一直是农业研究领域的重点研究对象。作为土壤的两大基本属性,土壤温度、水分的细微变化都会对农作物的生长产生极大的影响。很多研究表明,在土地水土保持、农业节水灌溉、土壤的肥力调配、大范围的局地性气候变化和生态环境保护诸多研究领域中,土壤温度、水分的时空性变化也是极为重要的两个参考性因素。因此,在农业、环境科学、气象等多个研究领域中,都把土壤温度、水分作为研究观测的基本对象。   由于我国的地理环境情况复杂,各地区数据观测水平参差不齐,导致土壤温度、水分的数据来源比较匮乏,数据汇总难度较大。传统的测量方式获取的土壤温度和水分数据,在测量精度、数据采集量、可靠性方面远远不能满足现今高精度、网
[单片机]
基于CC2480的土壤温度和水分梯度<font color='red'>测量系统</font>
基于AVR单片机的轮胎内径测量系统设计
轮胎模具用于成型轮胎,其加工质量对轮胎的生产非常重要。为了生产出好的轮胎,必须对轮胎模具加工质量提出高的要求。传统的加工质量检测法主要是靠百分表,人为采集数据后分析得出加工质量报告。这种办法的局限性是需要操作者有一定的工作经验,而且取样过程人为控制,精度受到一定影响。近几年来,轮胎模具工业随着轮胎的大量需求而得到了快速发展,传统的检测方法不能满足市场需求。光栅尺是一种数字位移测量设备,测量范围可达几十米,测量精确在微米级;激光测距仪是一种非接触测量设备,可以对不规则表面的目标位移进行测量,但是测量距离较小。将大范同的光栅尺和非接触测量的激光测距仪结合起来就可以实现对不规则面的目标距离进行测量。将光栅尺读头与激光测距仪固定在机械横梁
[单片机]
基于AVR单片机的轮胎内径<font color='red'>测量系统</font>设计
基于单片机的人体阻抗测量系统
  引 言   医学阻抗测量是利用生物组织与器官的电特性及其变化,提取与生物体生理、病理状况相关的生物医学信息的一种检测技术。它通常借助于驱动电极向检测对象送入一微小的交变电流(或电压)信号,同时测量两极的电压(或电流)信号,从而计算出相应阻抗,然后应用于不同目的。   本设计利用MSP430F149自带的串口通过RS485进行远距离实时传输,上位机可将实时数据进行曲线绘制、数据保存等处理。   1 系统结构   系统采用TI公司的MSP430F149单片机。该单片机有60 KB Flash、2 KB RAM,具有强大的数据处理能力。单片机通过向AD9852发送频率字、幅度字从而控制正弦波的频率、幅度。正弦波经过电流转电压、
[单片机]
基于单片机的人体阻抗<font color='red'>测量系统</font>
​MVG定期维护服务为企业天线测试测量系统长期平稳运行保驾护航
企业在投资购买了MVG的专业天线测试测量设备之后,接下来就需要优化设备的可靠性并确保持续的投资回报率,因此,设备的维护至关重要。与此同时,对于测试实验室工程师和研发中心经理来说,拥有一个不停机运行的强大、可靠的系统是非常必要的。 为此,MVG重磅推出一项经济高效的解决方案——定期维护服务。通过这一服务计划,MVG经验丰富的技术人员和工程师将为企业提供定制化的优质服务,确保其MVG天线测量系统、电波暗室设置、近场或远场测试范围以及SAR测试台长期平稳运行,并帮助客户优化系统价值,预测年度运营成本,最大限度地提高投资回报。 配备MVG的定期维护服务包,保证了测试系统的功能良好,这对于准确的测量、可重复的结果、高效的测试过程和有
[网络通信]
​MVG定期维护服务为企业天线测试<font color='red'>测量系统</font>长期平稳运行保驾护航
基于单片机的激光扫描高频信号幅值测量系统设计
Z扫描是一种应用于光学非线性测量的方法,使用这种方法可以测量光学材料非线性折射率的大小、正负以及非线性吸收系数。因为通过光学材料的激光能量大小与光电接收器转换后获得的电压幅值成某种比例关系,因此通过测量光电接收器转换后的电压幅值就可以很方便地计算出光学材料的非线性折射率大小、正负以及非线性吸收系数。由于光脉冲的宽度较窄,其宽度约为几个ns,因此通常采用高频数字示波器测量其信号的幅值,然而高频数字示波器虽然能够得到准确的数据,但是其价格昂贵,体积较大,不适合形成一个独立的光学测量系统。本文给出的测量系统,采用高速并行A/D转换的方法,不但能够实时检测出光电转换后的电压幅值的数据,同时通过高速并行比较器基准电压的调节能自动滤除不需要的数
[单片机]
基于单片机的激光扫描高频信号幅值<font color='red'>测量系统</font>设计
基于SCA100T的倾角测量系统设计
引言 目前,业内对倾角的测量多是基于MEMS的加速度传感器,SCA100T是由芬兰VTI公司推出,采用三维MEMS技术开发的一款高精度双轴倾角传感器,可同时测量相对于水平面的倾斜和俯仰角度,具有温度补偿功能。本文以塔式起重机为应用背景,采用SCA100T倾角传感器实时采集倾斜信息,检测塔式起重机支撑架的平衡性能,避免由于其过度倾斜而引发事故。以SCA100T为基础设计了一款小巧、灵敏度高的倾角测量系统,分析了SCA100T倾角传感器测角的原理,给出了系统各个模块的软硬件设计方法,同时提供了两种具有可扩展性的应用方法。 1 整体设计 图1所示为本系统的整体结构框图。该系统采用ATmega8单片机控制SCA100T倾角传感器
[单片机]
基于SCA100T的倾角<font color='red'>测量系统</font>设计
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved