一种简单有效的限流保护电路设计方法介绍

最新更新时间:2012-04-09来源: 21IC中国电子网关键字:限流保护电路  有效方法 手机看文章 扫描二维码
随时随地手机看文章

0    引言

    过流保护电路是电源产品中不可缺少的一个组成部分,根据其控制方法大致可以分为关断方式和限流方式。限流方式由于其具有电流下垂特性,故障解除后开关电源能自动恢复工作,因此,得到比较广泛的应用。

    限流保护电路首先要有一个电流取样环节,目前,一般的做法是串联一个小电阻或者是用霍尔元件来获得电流信号。当取样电流比较小的时候,这两种取样方法都是可取的。但当取样电流比较大时,电阻取样会有较大的损耗,降低了变换器的效率,而霍尔元件取样其体积比较大,且价格昂贵,对整个电源的成本也是个问题。

    基于以上考虑,本文提出一种简单有效的限流保护电路,克服了以上两种方式取样大电流时的缺点。它适用于正激、反激等各种变换器,而且成本也比较低。

1    限流保护电路工作原理

    图1中虚线框外的电路是普通的峰值电流方式的PWM控制电路,利用电流互感器取样峰值电流。图中所示的PWM芯片是ST公司生产的L5991。虚线框内是本文所提出的限流保护电路。它利用峰值电流控制中的电流信号作为输入信号,通过一个由D1R1C1组成的峰值保持电路和由运放组成的PI环节得到一个误差信号,在变换器的输出电流超过限定值的时候,该误差信号就会控制PWM芯片的占空比,从而使输出电流保持在限定值。由于D2存在,当输出电流低于限流值时,该部分电路对占空比的控制不起作用。

图1    限流保护电路

    下面以正激变换器为例,阐述限流保护电路的工作原理。

    正激变换器如图2所示。设图1中A点电压为va,B点电压为vb,C点电压为vc,图2中流过开关管的电流为is,电感电流为iL,输出电流为io。电流取样变压器原边电流,即流过开关管的电流is。并作以下假定:

图2    正激变换器

    1)二极管D1的导通压降是VD1并保持不变;

    2)R1在实际电路中的作用是与C1组成RC吸收网络吸收尖峰,这里假定为零;

    3)正激变换器电感L电感量较大,电路工作在CCM模式且电感电流波动较小。

    则正激变换器限流保护电路的理论工作波形如图3所示。其一个开关周期可以分为3个工作阶段。

    阶段1(t0t1    t0时刻vg>0,开关管S及二极管DR1导通,iL线性上升,所以,原边电流is也线性上升,va也随之上升,此时间段vavbD1,二极管D1处于关断状态,vb通过R3放电,呈下降趋势。

    阶段2(t1t2    t1时刻vavb>VD1,二极管D1开始导通,vb随着va线性上升。

    阶段3(t2t3)    t2时刻vg=0,S关断,is=0,则va=0,二极管D1关断,vb通过R3放电,直到下一周期的到来。

    从图3中可以看到vb是一个波动的电压,但是在实际电路中,由于图1中时间常数R3C1取得比较大,vb的波动很小,可以近似为一个直流电压。

图3    正激变换器限流保护电路理论波形

    根据假定3),电感电流的波动较小,即va的斜率比较小,另外VD1较小(是因为流过二极管的电流很小,实验中采用1N5819实测值为200mV左右),则vb的值近似地等于vaD(vaDT时间内的平均值)。从图3中可以看到VaD与输出电流io成正比,也即vb近似与输出电流io成正比,假定vb=KioK为常数。

    我们知道,当限流保护电路工作并达到稳定状态时,vb=vc=vref=Kio,此时输出电流io即为限流保护值。因此,通过改变参考电压Vref即可改变限流保护值。

2    限流保护点补偿电路

    在输出电压一定,输入电压为宽范围时,由于占空比随着输入电压的变化而变化,应用于不同的拓扑,限流保护电路的工作情况会有所不同,下面以正激和反激式变换器为例进行理论分析。

    在分析之前先作一个假定:由前面分析已经知道vb的值近似等于vaD,在此令vb=vaD,并且在以下的波形图中都以直流电压出现。

2.1    正激变换器

    根据限流保护电路的工作原理及以上假定,则有

    vb=vaD=isDn2R=    (1)

    io=    (2)

式中:isDisDT时间内的平均值;

      n1为变压器原副边匝数比;

      n2为电流互感器原副边匝数比;

      iLo为电感电流一个周期内的平均值。

当限流保护电路工作并达到稳定状态时,vb=vc=Vrefio即为限流保护值iomax。则

    iomax=    (3)

    从式(3)中可以看到,n1n2R为常数,在Vref一定的条件下,iomax是个恒定值,并不随输入电压的变化而变化。

[page]2.2    反激变换器

    反激变换器如图4所示,同样有

    vb=vaD=isDn2R=iLon2R=    (4)

    io=    (5)

式中:iLo为电感电流一个周期内的平均值(反激变换器的电感即变压器原边励磁电感);

      iDD′为流过副边二极管D的电流iD在(1-D)T时间内的平均值。

图4    反激变换器

又有    Vout=    (6)

推出    D=    (7)

将式(7)代入式(5)得

    io=    (8)

    当限流保护电路工作并达到稳定状态时,vb=vc=Vrefio即为限流保护值iomax。则

    iomax=    (9)

    从式(9)中可以看到,n1n2R为常数,在VoutVref一定的条件下,iomax随着Vin的增大而增大。

    比较式(1)和式(4)可以发现:在vb一定时(即限流保护电路工作并达到稳定状态时参考电压Vref一定),不管是正激变换器还是反激变换器,电感电流平均值iLo都不随输入电压的变化而变化。造成两者区别的关键在于:正激变换器的输出电流是连续的而反激变换器的输出电流是断续的。对于正激变换器来说io=iLo,而对于反激变换器来说io=n1(1-DiLo。由于在输出电压一定时,占空比D会随着输入电压的变化而变化,因此,反激变换器的限流值将会随着输入电压的变化而变化。

    图5和图6分别给出了假定io不变时,不同输入电压正激变换器和反激变换器限流保护电路的理论波形,图中输入电压Vin2>Vin1

图5    不同输入电压正激变换器限流保护电路理论波形

图6    不同输入电压反激变换器限流保护电路理论波形

[page]    根据以上分析可知,当参考电压恒定时,正激变换器限流值也是恒定的,跟输入电压没有关系。这里需要指出的是:以上的理论分析是基于vb=vaD的假定,当输入电压变化时,vb=vaD的近似程度也会不同,所以,实际上正激变换器限流值

    也会随着输入电压的变化而变化,只是波动很小,这个在之后的实验结果中可以看到。

    反激变换器限流值随着输入电压的变化而有较大变化,因此,需要采用一定的措施来进行补偿,使限流值的变化在可以接受的范围之内。从式(9)中可知限流值随着输入电压的增大而增大,也即假定限流值不变的话,vb随着输入电压的增大而减少。因此,需要对vb作一定的补偿,补偿电压应随着输入电压的增大而增大,从而来抵消vb的变化。用输入电压来作为补偿信号是一种可以选用的方法。输入电压通过一个电阻接到图1的C点,如图4虚线所示,此时限流保护电路工作并达到稳定状态时,vc不再等于vb,而是

    vc=vb

vc的第一部分vb随着Vin的增大而减小,而第二部分随着Vin的增大而增大,从而达到抵消的目的。R4的取值理论上可以根据最大输入电压和最小输入电压时vc相等来求得(R2取值已定的情况下),再在具体实验中进行微调,以求得到最小的限流值变化范围。

3    实验结果

    一个带有本文所提出的限流保护电路的正激变换器,和一个带有限流保护电路和补偿电路的反激变换器验证了上述的理论结果,其电路参数如表1所列。

表1    电路参数

变换器ForwardFlyback
输入电压/V9~159~15
输出电压/V245
输出功率/W24035
工作频率/kHz100100

    图7给出的是输入电压12V,电路满载工作时的限流保护电路工作波形,从图中可以看到,它的实际电路波形跟理论波形是一致的。

    图8及图9分别给出了输入电压分别为9V,12V,15V,电路满载工作时正激变换器和反激变换器限流保护电路va的波形,与图5和图6的理论波形也是一致的。

图7    正激变换器限流保护电路实验波形(Vin=12V)

图8    不同输入电压时正激变换器va波形

图9    不同输入电压时反激变换器va波形

 

    图10则给出了正激,反激补偿前和反激补偿后实测限流值随输入电压变化的曲线。正激变换器限流值随着输入电压变化基本不变,而反激变换器限流值在补偿前随输入电压的变化有较大的波动。但是,在加了补偿电路之后反激变换器限流值的稳定性有了明显的改善,证明了该补偿电路的有效性。

图10    输入电压变化时限流值波动曲线

4    结语

    本文提出的限流保护电路具有简单有效的特点,克服了电路工作电流比较大时电阻取样消耗功率大和霍尔元件取样体积大,成本高的缺点。

    本文分析了该限流保护电路应用于正激和反激变换器时的工作情况,并且提出了应用于宽范围反激变换器时的一个简单有效的补偿电路。对于别的拓扑需不需要附加补偿电路,读者可根据输出电流是连续还是断续自行分析。

 

 

关键字:限流保护电路  有效方法 编辑:冰封 引用地址:一种简单有效的限流保护电路设计方法介绍

上一篇:高亮度LED太阳能路灯照明系统设计方案
下一篇:用于能量计量测试的浪涌发生器设计方案

推荐阅读最新更新时间:2023-10-18 16:36

一种有效的反激钳位电路设计方法
0 引言 单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。由于RCD钳位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD钳位更有实用价值。 1 漏感抑制 变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。设计和绕制是否合理,对漏感的影响是很明显的。采用合理的方法,可将漏感控制在初级电感的2%左右。 设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。绕制时绕线要尽量分布得紧凑、均匀,这样
[应用]
有效的笔记本电脑电池修复方法
(一) 电池损坏的原因 笔记本电脑电池使用时间长了,就常常充不满电量,甚至显示电池已损坏,具体表现是内阻变大,在充电时两端电压上升比较快。这样容易被充电控制线路判定为已经充满,容量也自然下降。由于电池内阻比较大,放电时电压下降幅度大、速度快,所以系统很容易误认为电压不够,电量不足。在发现电池工作时间比较短时,应采取相应的措施。 (二) 用电池刷新程序恢复电池的放电时间 品牌笔记本电脑大都有电池刷新程序,利用它我们可以对电池进行修复。例如:笔记本电脑,所配电池为镍氢(Ni-Mh)电池,由于平时充放电不当,导致电池的放电时间越来越短,只剩下不到5分钟,若携带笔记本电脑外出工作,则显得非常不便,有什么方法可以恢复电池的放电时间呢?
[电源管理]
滤波多音频系统中图像的有效传输方法
摘要:提出了一种基于滤波多音频(FMT)调制技术的自适应图像传输方法。通过将自适应子载波分配与图像分割技术相结合,实现在频率选择性慢衰落信道中高质量的图像传输。仿真结果与理论分析证明该方法相对于传统图像传输在接收图像峰值信号噪比(PSNR)及接收端均衡复杂度方面的优势。 关键词:图像传输 滤波多音频(FMT) 峰值信噪比(PSNR) 未来的无线通信系统需要宽带、高速的系统性能来满足如数据、声音、图像及实时视频之类的高质量多媒体传输业务,高速宽带的通信方式已成为通信发展的必然趋势。多载波调制MCM(Multicarrier Modulation)作为一种新型高速的传输技术被人们广泛地应用于现代无线通信系统中。 MCU技术相对
[应用]
详解几种可有效开关电源的电磁干扰抑制方法
目前,许多大学及科研单位都进行了 开关电源 EMI(Electromagnetic Interference)的研究,他们中有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。 开关电源电磁干扰的产生机理 开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种,若按耦合通路来分,可分为传导干扰和辐射干扰两种。现在按噪声干扰源来分别说明: 1、二极管的反向恢复时间引起的干扰 高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载
[电源管理]
详解几种可<font color='red'>有效</font>开关电源的电磁干扰抑制<font color='red'>方法</font>
抑制单相及三相正弦波逆变器偏磁的有效方法
摘要:分析了SPWM逆变电源中直流偏磁产生的原因,对目前所采用的抗偏磁方法进行了比较,提出了以各桥臂中点电压作为反馈来抑制直流偏磁的新方法。可适用于单、三相逆变电源抗偏磁设计。 关键词:正弦波脉宽调逆变器;偏磁;抑制     1 引言 在SPWM开关型变换器中,主变压器的偏磁可以说是一种通病。只是在各种应用场合中,表现的程度不同而已。偏磁的后果是十分严重的,轻则会使变压器和功率半导体模块的功耗增加,温升加剧,变压器的机械噪声增大(当开关频率或调制频率在听觉范围内时),严重时还会损坏功率器件,使逆变器不能正常工作。因此,抗偏磁是开关型逆变电源的的关键问题之一。 本文在比较分析了PWM和SPWM
[电源管理]
抑制单相及三相正弦波逆变器偏磁的<font color='red'>有效</font><font color='red'>方法</font>
线性恒流LED驱动器驱动LED是最经济有效方法
利用简单的电阻器限制 LED 串中的电流看似最为经济和简便,那么为何还要费尽心思地使用线性 驱动 器 IC ? 实际上,线性驱动器所带来的益处很多,具体包括: ● 避免使用复杂、昂贵的器件(补偿不断变化的正向电压需要不同型号的电阻器)。通过脉宽调制( PWM )方式调节 亮度 。 ● 由于可采用不稳定的系统 电源 ,降低了系统成本。 ● 减少了所需的板卡空间。 ● 使用更多的LED,提高了系统效率。 ● 理想的LED偏置和保护功能,最大限度延长使用寿命。 在许多应用中,例如标志牌、彩虹管、广告牌、建筑照明灯、汽车照明灯、飞机照明灯等,线性驱动器都可满足相关应用的需求。 除上述优
[电源管理]
线性恒流LED驱动器驱动LED是最经济<font color='red'>有效</font>的<font color='red'>方法</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved