光耦的热特性

最新更新时间:2012-05-22来源: 21IC中国电子网关键字:光耦  热特性 手机看文章 扫描二维码
随时随地手机看文章

通过管理芯片和周围空气之间的热传递,维持光耦特性,避免失效。

  任何半导体设备的动作依靠其模型温度,这就是为什么电子参数要按照特定温度给出。为维持光耦特性,避免失效,通过管理芯片和周围空气之间的热传递限制温度。不应该超过设计规定的连接温度,即使光耦也许没有被归入“功率器件”的种类。这么做有以下两个原因:

  首先,全面增加光耦长期可靠性,因为任何固态设备的工作温度都与其长期可靠性成反比。因此应该是器件工作在最低的实际工作温度下。其次,某些参数与设备的问题紧密相连,这些随温度而变得参数包括漏电流、触发电流、CTR、骤回电压和电阻。

  进行热计算的三个主要方法是通过使用器件降额值、随温度变化功率图或温度模型。最简单的方法是使用热降额值(假定用功率/度)。然而,制造商非常保守的得到这个数字,所以这个方法不能提供最精确的结果。

  随温度变化功率图与第一种方法非常相似,但是用简单的数字代替,依照随温度变化功率图(图1)。并且,这是一个非常保守的方法,应该非常顾及可靠的设计,但是它也不能提供最精确的结果。

  进行热计算更全面的方法是使用热模型。一些光耦的热模型已经建立,用于大多数简单精确的计算。

 

  英文原文:

  Thermal characteristics of optocouplers

  Sustain an optocoupler\'s performance and avoid failure by managing the heat transfer between the chip and the ambient atmosphere.

  By Roshanak Aflatouni and Bob Gee, Vishay Intertechnology -- EDN, 10/18/2007

  The behavior of any semiconductor device is dependent on the temperature of its die, which is why electrical parameters are given at a specified temperature. To sustain an optocoupler\'s performance and to avoid failure, the temperature is limited by managing the heat transfer between the chip and the ambient atmosphere. You should not exceed the device\'s rated junction temperature, even if an optocoupler may not fall into what you consider the "power device" category. This is true for two main reasons.

  The first is to increase the overall long-term reliability of the optocouplers, as the operating temperature of any solid-state device is inversely proportional to its long-term viability. Consequently, you should operate a device at the lowest practical operating junction temperature. Secondly, certain parameters are closely tied to the operating temperature of the device; these temperature-dependent parameters include leakage current, trigger current, CTR, snapback voltage, and on-resistance.

  The three main ways of performing thermal calculations are by using a component derating number, or a graph of allowable power versus temperature, or a thermal model. The simplest approach is to use a thermal derating number (given in power/degrees). However, manufacturers are very conservative when deriving this number, so this approach does not provide you with the most accurate results.

  A graph of allowable power versus temperature is very similar to the first approach, but instead of a simple number, you follow a graph of allowable power versus temperature (Figure 1). Again, this is a very conservative approach and should allow for a very reliable design, but it does not provide you with the most accurate results.

  A more comprehensive method for performing thermal calculation is to use a thermal model. Thermal models have been created for some optocouplers containing multiple dice —including phototriacs — for the most simple and accurate calculations.

  Multiple Dice Optocoupler Thermal Model

  This article demonstrates a simplified resistive model. When used correctly, this model produces results that provide "engineering accuracy" for practical thermal calculations. Figure 2 provides the simplified electrical analogous model for any optocoupler.

  θCA = Thermal resistance, case to ambient, external to the package.

  θDC = Thermal resistance, detector to case

  θEC = Thermal resistance, emitter to case

  θDB = Thermal resistance, detector junction to board

  θDE = Thermal resistance, detector to emitter die

  θEB = Thermal resistance, emitter junction to board

  θBA = Thermal resistance, board to ambient, external to the package

  TJE = Emitter junction temperature

  TJD = Detector junction temperature

  TC = Case temperature (top center)

  TA = Ambient temperature

  TB = Board temperature

  Thermal resistances and specified junction temperatures for a particular device are provided in select datasheets.

  Thermal Energy Transfer

  There are three mechanisms by which thermal energy (heat) is transported: conduction, radiation, and convection. Heat conduction is the transfer of heat from warm areas to cooler ones, and effectively occurs by diffusion. Heat radiation (as opposed to particle radiation) is the transfer of internal energy in the form of electromagnetic waves. Heat convection is the transfer of heat from a solid surface to a moving liquid or gas.

  All three methods occur in optocouplers. However, for most products in most environments, the majority (~ 75 %)

of heat leaving the package exits through the lead frame and into the board. This occurs because θBA is a conductive phenomenon with a much lower thermal resistance than the convective and radiative phenomena associated with θCA (θCA is typically an order of magnitude larger than other thermal resistances). Because very little heat leaves through the top of the package (heat convection), junction-to-case temperatures (θDC and θEC) are negligible in most environments.

 This phenomenon is shown graphically in Figures 3a-c by the package temperature profile and strong heat flux contours evident in the die, lead frame, and board via. Because very little heat leaves through the top of the package, the top case temperature is a poor indicator of junction temperature. This means that the majority of the heat is transferred to the board, and very little heat is transferred to the air via the case, which can be verified in the thermal network.

  Therefore, θDC and θEC can be removed from the thermal model (Figure 2). In this situation, the critical package thermal resistances become θDE, θDB, and θEB. θBA is the thermal resistance from the board to the ambient, and is primarily driven by the geometry and composition of the board. The type of board design used defines this characteristic. Junction-to-case thermal resistances are removed based on the fact that very little heat is leaving through the top of the package (Figure 4).

  Thermal to Electrical Analogy

 [page] The thermal-resistance characteristic defines the steady-state temperature difference between two points at a given rate of heat-energy transfer (dissipation) between the points. The temperature difference in a thermal-resistance system in an analog to an electrical circuit, where thermal resistance is equivalent to electrical resistance, is equivalent to the voltage difference, and the rate of heat-energy transfer (dissipation) is equivalent to the current (Table 1).

  In a thermal circuit, a constant current source represents power dissipation. This is because generated heat must flow (steady-state) from higher temperatures to lower temperatures, regardless of the resistance in its path.

  Assuming that you know or can estimate the power dissipated from the detector and the emitter (LED) and the temperature of the board and ambient, you can calculate the node temperatures by solving the network equations. If you desire to use the complete thermal resistance model, a more complex set of network equations will need to be solved.

  The network equations will provide you with an estimate of what the operating temperature(s) would be before the specific environment is known. As an example, Figure 5 illustrates the analogous electrical model for calculating the temperature at both detector and emitter junctions, given a set of thermal resistances at room temperature with 50 mW on the emitter (PE) and 500 mW on the detector (PD). In order to write an equation to calculate the node temperatures, we will need to assume some heat flow directions (Figure 5). Based on Figure 5, the following equations will calculate the node temperatures:

  PDE + PDB + PEC = PE (1)

  - PDE + PDB + PDC = PD (2)

  TB - TJD + θDB x PDB = 0 (3)

  TB - TJE + θEB x PEB = 0 (4)

  TJE - TJD + θDE x PDE = 0 (5)

  TB - θBA x (PEB + PDB) = TA (6)

  TC - θCA x (PEC + PDC) = TA (7)

  TC - TJD + θDC x PDC = 0 (8)

  TC - TJE + θEC x PEC = 0 (9)

  Where:

  PDB = Power dissipation, detector junction to board

  PDE = Power dissipation, detector to emitter

  PEB = Power dissipation, emitter junction to board

  PDC = Power dissipation, detector junction to Case

  PEC = Power dissipation, emitter junction to Case

  When the simplified thermal model is used, equations 7-9 do not play any role in the node temperature calculation, and equations 1 and 2 are simplified to equations 1\' and 2\'. Figure 6a shows a simplified thermal circuit model. Since θCA, θEC, and θDC are not included in the simplified thermal model, all equations that include these resistances (equations 7-9) can be excluded for node temperature calculation. When TA is known, the following equations will calculate the node temperatures:

  PDE + PDB = PE (1\')

  - PDE + PDB = PD (2\')

  TB - TJD + θDB x PDB = 0 (3)

  TB - TJE + θEB x PEB = 0 (4)

  TJE - TJD + θDE x PDE = 0 (5)

  TB - θBA x (PEB + PDB) = TA (6)

  For a desired TB and/or when only TB is known, Figure 6a is further simplified (Figure 6b). When TB is given, θBA does not play any role in calculating the node temperature, and any equation(s) that includes θBA can be eliminated. Based on Figure 6, the following equations will calculate the node temperatures when only TB is known:

  PDE + PDB = PE (1\')

  - PDE + PDB = PD (2\')

  TB - TJD + θDB x PDB = 0 (3)

  TB - TJE + θEB x PEB = 0 (4)

  TJE - TJD + θDE x PDE = 0 (5)

  Example 1:

  Based on our characterization, Table 2 shows the thermal resistances for a simplified 6-pin dip package optocoupler. As the θBA is dependent upon the material, number of layers, and thickness of the board used, the optocouplers in our analysis were mounted on 2- and 4-layer boards with a thickness of 4 mm. Obviously, the θBA for the two different boards are different (Table 2).

  Using equations 1\'-2\' and 3-6, Table 2\'s thermal resistances, and assuming Figure 6a\'s emitter and detector power dissipations, Table 3 shows the node temperatures when TA is known.

  Example 2:

  You can use the complete thermal model to calculated node temperatures. However, the results would not vary drastically from thermal calculation based on the simplified model for most products and i n most environments. Hence, it is entirely up you to decide how accurate the results are needed for each individual deign. Table 4 provides all thermal resistances for 6-in dip package phototriac.

  Using equations 1-9, Table 4\'s thermal resistances, and assuming Figure 5\'s emitter and detector power dissipations, Table 5 shows the node temperatures when TA is known.

  Regardless of the package size and type, the thermal analysis will need to be performed to ensure a solid design. To aid this process, Vishay provides detailed thermal characteristics for newly released optocouplers and solid-state relays (SSRs) that have total power dissipation of 200 mW and higher. This thermal data supplied allows you to more accurately simulate heat distribution and thermal impedance for optocoupler and SSR devices and thus avoid the problems that can arise when thermal parameters are exceeded.

关键字:光耦  热特性 编辑:冰封 引用地址:光耦的热特性

上一篇:电路设计基础知识(五)——继电器
下一篇:CMOS互补(推挽)放大器

推荐阅读最新更新时间:2023-10-18 16:45

“无光耦合器”的同步正向控制器
    加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2014 年 3 月 17 日 – 凌力尔特公司 (Linear Technology Corporation) 推出 LT3752 / LT3752-1,该器件是一款能够提供高输入电压的同步正向控制器,并具备有源箝位变压器复位功能。该器件采用集成的内务处理控制器以偏置主边和副边 IC,维持了受控的 VOUT 启动和停机。从内部产生偏置电压消除了用额外绕组产生偏置电源的需求,因此还可降低复杂性并减小主电源变压器的尺寸。LT3752 在 6.5V 至 100V 输入电压范围内工作。就高至 400V 及更高的输入电压而言,LT3752-1 允许 RC 电路靠输入电压启动
[电源管理]
光耦助力提升电动汽车充电站的安全与效率
对应着电动汽车的发展,快速充电系统也面临着一系列挑战,比如如何提高充电站设计的安全性能和能源效率?这个问题可以通过使用光耦来协助解决。 近年来,全球交通运输领域的电动化得到了飞速发展。到2012年底,全球电动汽车(EV)数量达到约18万辆。据国际能源署(IEA)的《全球电动汽车展望》报告,这个数字在2014年底增长了3.7倍,达到66.5万多辆。该报告还预测,到2020年将约有2 000万辆电动汽车在道路上行使 。 随着电动汽车的快速增长,为延长车辆的行驶里程,人们对充电基础设施的需求也随之 水涨船高 。电动汽车充电站,也称为电动汽车供应设备(EVSE),为电动汽车供电,同时提供网络互连。在本篇文章当
[汽车电子]
<font color='red'>光耦</font>助力提升电动汽车充电站的安全与效率
电流传输比(CTR)对光耦反馈式开关电源设计的影响
CTR:发光管的电流和光敏三极管的电流比的最小值。 隔离电压:发光管和光敏三极管的隔离电压的最小值。 光耦的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。 集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小
[电源管理]
Vishay推出全新系列1 MBd高速光耦---VOH1016A系列
日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出全新系列1 MBd高速光耦--- VOH1016A系列 ,该器件采用集电极开路输出并具有施密特触发器功能,可轻松集成到数字系统中。 VOH1016A系列 器件接通门限电流低,典型值为0.65 mA,最大供电电流1.0 mA,适用于可编程逻辑控制器、串行数据通信和总线系统以及开关电源。 今天发布的器件将高效输入LED与集成的光电二极管IC检测器结合在DIP-6和SMD-6封装中。光耦接通门限电流和供电电流低—最低瞬态共模噪声抑制(CMTI)达10 kV/μs—使该系列器件成为数字应用电流噪声隔离和断开接地环路的理想解决方案
[电源管理]
Vishay推出全新系列1 MBd高速<font color='red'>光耦</font>---VOH1016A系列
十五年积累,数字隔离器向光耦发起新一轮挑战
数字隔离器,顾名思义,就是利用数字技术实现信号与电源的隔离,从而保证人身及系统安全,确保高低压系统可以正常通信,并且不受浪涌电压及噪声的影响。 目前,随着电动汽车的发展,汽车电池母线电压不断提高,这就给电池、电机等高压侧以及芯片的低压侧之间的通信、采集、控制、功率传输等带来了挑战。需要更高耐压、更低功耗、更高传输率的隔离技术。除此之外,工业自动化领域也正在利用更多自控技术,通过网络将电子控制系统与工业的执行系统相连,这时就需要隔离技术以分隔高压高电流的执行系统和低压低电流的控制系统。 常见的隔离技术 在数字隔离器诞生之前,业界最早采用传统继电器作为隔离,之后光耦出现,并在长达50年的时间内,一直是隔离的基础。 近年
[嵌入式]
十五年积累,数字隔离器向<font color='red'>光耦</font>发起新一轮挑战
倒装芯片衬底粘接材料对大功率LED特性的影响
   1 引言   1998年美国 Lumileds Lighting公司封装出世界上第一个大功率LED (1W LUXOEN 器件),使LED器件从以前的指示灯应用变成可以替代传统 照明 的新型固体光源,引发了人类历史上继白炽灯发明以来的又一场照明革命。1W LUXOEN 器件使LED的功率从几十毫瓦一跃超过1000毫瓦,单个器件的光通量也从不到1个 lm飞跃达到十几个lm。大功率LED由于芯片的功率密度很高,器件的设计者和制造者必须在结构和材料等方面对器件的热系统进行优化设计。   目前GaN 基外延衬底材料有两大类 :一类是以日本 日亚化学 为代表的蓝宝石;一类是美国 CREE 公司为代表的SiC 衬底。传统的
[电源管理]
倒装芯片衬底粘接材料对大功率LED<font color='red'>热</font><font color='red'>特性</font>的影响
LED特性实际应用关键性能探讨
  必须清楚地了解LED内部从PN结到环境的热特性,从而确保得到一个安全,可靠的设计和令人满意的性能。在热流路径中可能有裸芯片或胶层等多个导热界面,并且它们的厚度和热阻很难在生产过程中进行控制。此外,在LED封装和作为散热器的照明设备外壳之间的导热界面进一步增加了设计的挑战性。必须在样机阶段尽可能早地了解LED的热阻值。   电流,颜色和效能   LED的光输出特性主要取决于其工作条件。前向电流增加会使LED产生更多的光。但当前向电流保持不变,光输出会随着LED的温度升高而下降。图1描述了温度,电流和光输出的关系。并且描述了一个LED相关的颜色光谱在峰值波长处的偏移。用于普通照明的单色LED,蓝色光谱的峰值会发生偏移,
[电源管理]
LED<font color='red'>热</font><font color='red'>特性</font>实际应用关键性能探讨
飞兆半导体的高速逻辑门光耦合器FOD07xx
飞兆半导体公司 (Fairchild Semiconductor) 为设计人员带来新型的光耦合器解决方案,提供快速和稳定的隔离接口,能够在噪杂的工业环境中确保低传输错误率和公认的可靠性。全新的 FOD0721 、 FOD0720 和 FOD0710 逻辑门光耦合器,可以在总线接口将逻辑控制电路和收发器隔离开来。由于工业系统易受瞬变噪声的影响, FOD07xx 系列器件具有的高抗噪性能和高速度 (25Mbps) ,能够最大限度地减小发生传输误差或系统故障的可能。这些产品满足了对高可靠性的要求并通过了 UL1577 标准,适用于 Profibus 、 DeviceNet 、 CAN 和 RS
[工业控制]
飞兆半导体的高速逻辑门<font color='red'>光耦</font>合器FOD07xx
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved