由于各种原因的影响,电网中存在着电流谐波,由于电网阻抗的存在,谐波电流流过电网阻抗,会使负载端电压波形也出现畸变。此时系统的功率因数小于1,这样会给电网带来“污染”,同时也会影响超声发生器的输出电压和系统的正常工作。因此需要设计特殊电路来对谐波进行抑制,PFC电路就是其中之一。PFC输出的电压一般是恒定的,但是在有些场合些要对输出电压进行调节,利用调节输出电压来控制输出功率等等。因此对PFC输出电压的控制策略的研究具有一定的实际意义。
单相PFC技术
PFC(Power Factor Correction)就是对电流脉冲的高度进行抑制,使电流波形尽量接近正弦波。单相PFC根据采用的具体方法不同可以分为无源功率因数校正和有源功率因数校正两种。
图1单相无源功率因数校正电路
图2单相APFC电路及主要波形
APFC电路电压控制方案
APFC电路利用电阻分压组成的恒定电压反馈网络可以控制输出恒定的电压。根据这一原理,本文巧妙地利用APFC电压反馈网络来进行电压控制,即通过改变电阻分压网络的电阻R2来调节输出电压。R2发生变化使得电压反馈信号随之变化,电压比较器与电压给定进行比较,比较输出的误差控制PWM发生装置,从而调解驱动信号的脉宽,使得输出电压在一定范围内进行线形的调节。通过这种方式就可以根据实际要求调节逆变器的输入电压。应用在功率控制的场合时,当负载增大的时候,输出电流瞬时减小,功率随之减小,此时调节R2使电压上升,那么输出电流也随之上升,直至电压与电流乘积(即输出功率)与给定的参考一致,从而实现了输出功率的调节。
但是如果单一的调节R2会造成危险隐患,例如若R2短路,R1就直接接地,输出电压会一直上升;若R2断路,电压反馈被拉高到母线电压,可能会造成无输出。因此要设计的电压反馈网络必须防止出现上诉状况,本文设计的电压反馈网络中,R3与R2串联防止R2短路,R4与R2、R3并联防止短路状态的发生。图3为初步设计的电压调节反馈网络。
图3 电压反馈网络
在初步设计中R2是一个可调节的电位器,是需要人工手动调节,但是这种方法不仅精确度不够,而且操作麻烦,自动化程度低。因此本文在设计中采用单片机控制数字电位器代替的机械式电位器R2的策略来进行自动调节。
本文采用的是非易失性数字电位器,它是一种可在计算机控制下,通过编程来实现自动操作的智能化器件。它不像机械或模拟电位器那样可以连续调节,但阶梯式的阻值变化却具有调节精度高和阻值稳定的特点。其阻值分辨的台阶越多,阻值变化越精细,调整的灵敏度越高[2][3]。本文采用的数字电位器是Xicor公司生产的100节非易失性数字电位器X9312。X9312的原理图如图4所示[3]。
图4 X9312原理图
由于各种原因的影响,电网中存在着电流谐波,由于电网阻抗的存在,谐波电流流过电网阻抗,会使负载端电压波形也出现畸变。此时系统的功率因数小于1,这样会给电网带来“污染”,同时也会影响超声发生器的输出电压和系统的正常工作。因此需要设计特殊电路来对谐波进行抑制,PFC电路就是其中之一。PFC输出的电压一般是恒定的,但是在有些场合些要对输出电压进行调节,利用调节输出电压来控制输出功率等等。因此对PFC输出电压的控制策略的研究具有一定的实际意义。
单相PFC技术
PFC(Power Factor Correction)就是对电流脉冲的高度进行抑制,使电流波形尽量接近正弦波。单相PFC根据采用的具体方法不同可以分为无源功率因数校正和有源功率因数校正两种。
图1单相无源功率因数校正电路
图2单相APFC电路及主要波形
APFC电路电压控制方案
APFC电路利用电阻分压组成的恒定电压反馈网络可以控制输出恒定的电压。根据这一原理,本文巧妙地利用APFC电压反馈网络来进行电压控制,即通过改变电阻分压网络的电阻R2来调节输出电压。R2发生变化使得电压反馈信号随之变化,电压比较器与电压给定进行比较,比较输出的误差控制PWM发生装置,从而调解驱动信号的脉宽,使得输出电压在一定范围内进行线形的调节。通过这种方式就可以根据实际要求调节逆变器的输入电压。应用在功率控制的场合时,当负载增大的时候,输出电流瞬时减小,功率随之减小,此时调节R2使电压上升,那么输出电流也随之上升,直至电压与电流乘积(即输出功率)与给定的参考一致,从而实现了输出功率的调节。
但是如果单一的调节R2会造成危险隐患,例如若R2短路,R1就直接接地,输出电压会一直上升;若R2断路,电压反馈被拉高到母线电压,可能会造成无输出。因此要设计的电压反馈网络必须防止出现上诉状况,本文设计的电压反馈网络中,R3与R2串联防止R2短路,R4与R2、R3并联防止短路状态的发生。图3为初步设计的电压调节反馈网络。
图3 电压反馈网络
在初步设计中R2是一个可调节的电位器,是需要人工手动调节,但是这种方法不仅精确度不够,而且操作麻烦,自动化程度低。因此本文在设计中采用单片机控制数字电位器代替的机械式电位器R2的策略来进行自动调节。
本文采用的是非易失性数字电位器,它是一种可在计算机控制下,通过编程来实现自动操作的智能化器件。它不像机械或模拟电位器那样可以连续调节,但阶梯式的阻值变化却具有调节精度高和阻值稳定的特点。其阻值分辨的台阶越多,阻值变化越精细,调整的灵敏度越高[2][3]。本文采用的数字电位器是Xicor公司生产的100节非易失性数字电位器X9312。X9312的原理图如图4所示[3]。
图4 X9312原理图
由于各种原因的影响,电网中存在着电流谐波,由于电网阻抗的存在,谐波电流流过电网阻抗,会使负载端电压波形也出现畸变。此时系统的功率因数小于1,这样会给电网带来“污染”,同时也会影响超声发生器的输出电压和系统的正常工作。因此需要设计特殊电路来对谐波进行抑制,PFC电路就是其中之一。PFC输出的电压一般是恒定的,但是在有些场合些要对输出电压进行调节,利用调节输出电压来控制输出功率等等。因此对PFC输出电压的控制策略的研究具有一定的实际意义。
单相PFC技术
PFC(Power Factor Correction)就是对电流脉冲的高度进行抑制,使电流波形尽量接近正弦波。单相PFC根据采用的具体方法不同可以分为无源功率因数校正和有源功率因数校正两种。
图1单相无源功率因数校正电路
图2单相APFC电路及主要波形
APFC电路电压控制方案
APFC电路利用电阻分压组成的恒定电压反馈网络可以控制输出恒定的电压。根据这一原理,本文巧妙地利用APFC电压反馈网络来进行电压控制,即通过改变电阻分压网络的电阻R2来调节输出电压。R2发生变化使得电压反馈信号随之变化,电压比较器与电压给定进行比较,比较输出的误差控制PWM发生装置,从而调解驱动信号的脉宽,使得输出电压在一定范围内进行线形的调节。通过这种方式就可以根据实际要求调节逆变器的输入电压。应用在功率控制的场合时,当负载增大的时候,输出电流瞬时减小,功率随之减小,此时调节R2使电压上升,那么输出电流也随之上升,直至电压与电流乘积(即输出功率)与给定的参考一致,从而实现了输出功率的调节。
但是如果单一的调节R2会造成危险隐患,例如若R2短路,R1就直接接地,输出电压会一直上升;若R2断路,电压反馈被拉高到母线电压,可能会造成无输出。因此要设计的电压反馈网络必须防止出现上诉状况,本文设计的电压反馈网络中,R3与R2串联防止R2短路,R4与R2、R3并联防止短路状态的发生。图3为初步设计的电压调节反馈网络。
图3 电压反馈网络
在初步设计中R2是一个可调节的电位器,是需要人工手动调节,但是这种方法不仅精确度不够,而且操作麻烦,自动化程度低。因此本文在设计中采用单片机控制数字电位器代替的机械式电位器R2的策略来进行自动调节。
本文采用的是非易失性数字电位器,它是一种可在计算机控制下,通过编程来实现自动操作的智能化器件。它不像机械或模拟电位器那样可以连续调节,但阶梯式的阻值变化却具有调节精度高和阻值稳定的特点。其阻值分辨的台阶越多,阻值变化越精细,调整的灵敏度越高[2][3]。本文采用的数字电位器是Xicor公司生产的100节非易失性数字电位器X9312。X9312的原理图如图4所示[3]。
图4 X9312原理图
图5是本文设计的利用数字电位器实现电压自适应控制的原理图。图中检测信号就是电压反馈信号,其输出经过A/D转换后作为控制信号,并由单片机根据控制关系和特性给出调整信号和计数脉冲,使数字电位器改变阻值而作用于电平控制电路(即APFC电路),以达到调节输出电压的要求。
图5电压控制原理图
采用单片机控制的软件流程如图6所示。图中A1为 ,A2为 ,A3为 ,A4为封锁信号。A1、A2、A3控制数字电位器X9312,A4是防止输出过大控制失效的封锁信号。由A4控制输入的保护电路,在输出失控时,封锁输入,保护整个电路的安全。
图6 单片机软件控制流程图
根据上诉的电压调节原理,最终确定实际应用单片机控制数字电位器实现APFC输出电压自适应控制的电路如图7所示。
图7电压控制电路
结论
利用APFC电路实现输出电压的调节,既提高了整个电路的功率因数,又能实现对输出电压的控制。在此基础上应用单片机控制数字电位器来调节电压,实现了数字化控制,精度高、安全性好、自适应效果良好。这种控制策略可以应用在对逆变电路母线电压控制以及对输出功率控制系统中。
上一篇:便携式电源的应用趋势:大功率和多输入源充电
下一篇:阵列式瞬态电压抑制器以太网接口应用及选型原
推荐阅读最新更新时间:2023-10-18 16:49
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC