FPGA设计中的功率计算技巧

最新更新时间:2012-06-28来源: 与非网关键字:FPGA设计  功率计算 手机看文章 扫描二维码
随时随地手机看文章

          随着工艺技术的越来越前沿化, FPGA器件拥有更多的逻辑、存储器和特殊功能,如存储器接口、 DSP块和多种高速SERDES信道,这些发展不断地对系统功率要求提出挑战。由此,设计师也许会想要拖一座冰山到电路板上,但这样一来IT人员就会面临一团乱麻的境地了。显然冰山是一个不切实际的玩笑,以下是一种可行的方案:使用工具来精确计算功率要求。

         功率计算的关键是两方面:静态和动态功率。 尽管FPGA厂商承诺将提供切实可用的低功耗器件,但由于工艺技术从130纳米缩小到90纳米、65纳米或更加小的线条,晶体管固有的漏电加剧了,静态功耗也增加了。此外,使用FPGA时极高的系统性能要求使得动态功耗上升,动态功耗是频率和开关节点的函数。那设计者如何才能准确地确定器件的功耗,同时考虑与这个问题有关的所有重要因素,有效地作出必要的设计权衡,建立一个满足所有性能要求的可靠系统呢?

         功耗计算对于FPGA设计十分重要是基于两点考虑:系统电源的大小和散热。众所周知,系统中的所有器件都需要一个良好、清洁、精确和可靠的电源,且能有效地运作。精确地计算功耗就能有的放矢地确定电源大小,电源过大将增加成本。散热装置对系统可靠性至关重要。所有器件都已列出了其对器件结温容忍度的界限。超过这些界限,将可能导致运行效率低下,或者更糟糕的是导致系统永久地损坏。当然,也可以采用一些技术来缓解散热问题,如对系统增加散热片或气流,从而有效地降低运行温度。那么,在系统建立之前,设计师怎样才能够准确地估计功耗和设备的热耗?这相当于在谈论一个先有鸡还是先有蛋的问题!幸运的是,有一个专为这项任务而设计的功耗计算器。

准确评估功耗去建立一个热模型的一些基本要素如下:

1 。器件的各种要素: FPGA(使用的和未使用的部分) 、封装、工作频率、活动因素和速度等级。
2 。环境因素:散热片、气流、电路板尺寸和环境温度。
3 。可用性要素:设计过程中在任何时间的建模能力,导入实际的运行数据,方便地做“假设”的完整环境的评估。

         由于功率计算器必须在整个设计过程中都是可用的,能始终在这个工具中对器件作出选择很重要,同样,用户对不同的封装、器件、密度、速度等级和温度范围进行选择也是很重要的。热特性还使用户随时了解他的设计是在一个明确、安全的运行环境中进行。

         功率计算器还提供了非常明确的单独工作区域,以按钮的形式对器件的每个结构、资源、可用的元件进行操作。针对可用性的要求,该工具会显示每个电源的电流和功率,以及每个元件和所有元件的功耗总和。这样给出了每个元件对整体功耗影响的完整了解,并允许用户决定如何将设计进行最好的优化,以减少总功耗。

表格的罗列展示是很有价值,图形也相当有用。图2展示了一组由功率计算器自动生成的图形。图表显示了下列信息:

功率与电压(或电压―――典型和最坏的情况)
功率与环境温度―――典型和最坏的情况
功率与频率―――典型和最坏的情况
这些图表为设计一个可靠系统提供了很有用的信息。
 

          环境变量也必须是易于设置和修改的。图3展示了高级的热特性选择屏幕,用户可以轻松地为设计修改热特性。由工具或自定模式提供的普通热模型可用于计算,为任何设计环境提供灵活性和精确性也很重要。用户还可以设置散热片和气流参数,以及有效的用于计算的Theta-JA。为了能够实现所期望的性能和可靠的结果,所有这些因素对正确 分析实际系统 环境、作出必要的设计选择来说至关 重要。

        有一个完整的系统级理解和精确的功率模型将能使设计师作出必要的决择,从而完成设计。然后,设计者可以集中精力于降低功耗,其中包括以下几个方面:

降低设备的工作电压
优化时钟频率
减少设计中长的布线
优化编码
优化热模型 

        依据设计中所用器件资源的全部数据、所有对建立热模型至关重要的环境变量、以及在设计过程中自由地使用和修改各点参数,就可以可靠地实现FPGA设计,使其满足系统性能指标。

关键字:FPGA设计  功率计算 编辑:探路者 引用地址:FPGA设计中的功率计算技巧

上一篇:XY·CN总线通信系统的电源系统设计
下一篇:小电流接地系统单相接地故障选线方法研究

推荐阅读最新更新时间:2023-10-18 16:54

FPGA设计与DSP设计的区别
  Q1:FPGA设计与DSP设计相比,最大的不同之处在哪里?   A1:这个问题要从多个角度看。它们都用于某个功能的硬件电路实现,但是它们的侧重点有所不同。这里涵盖的说一下。    1) 内部资源   FPGA侧重于设计具有某个功能的硬件电路,内部资源是VersaTiles(Actel FPGA )之类的微小单元,FPGA的内部单元初始在编程前都是使用的是HDL语言实现硬件电路的设计描述。FPGA内部的连线资源将这些功能模块的内部和模块之间的信号连接起来,构成较大的模块。FPGA可以内部实现ALU,加法器,乘法器,累加器,FIFO,SRAM,DDR controller,FFT,HDLC,DMA,PWM等等数字电路,也就
[嵌入式]
基于CORDIC 2FSK调制器的FPGA设计
摘要 :频移键控(FSK)是用不同频率的载波来传递数字信号,并用数字基带信号控制载波信号的频率。提出一种基于流水线CORDIC算法的2FSK调制器的FPGA实现方案,可有效地节省FPGA的硬件资源,提高运算速度。最后,给出该方案的硬件测试结果,验证了设计的正确性。 0 引言 频移键控(FSK)是用不同频率的载波来传送数字信号,并用数字基带信号控制载波信号的频率。具有抗噪声性能好、传输距离远、误码率低等优点。在中低速数据传输中,特别是在衰落信道中传输数据时,有着广泛的应用。传统上以硬件实现载波的方法都是采用直接频率合成器(DDS)实现。但是DDS传统的实现方式是基于查找表思想,即通过查找预先存储的正余弦表来产
[嵌入式]
基于CORDIC 2FSK调制器的<font color='red'>FPGA设计</font>
基于FPGA设计航空电子系统
  基于现场可编程门阵列 (FPGA) 核心的实施体现了先进的现代航空电子设计方法。   这项技术具有多种优势,如废弃组件管理、降低设计风险、提高集成度、减小体积、降低功耗和提高故障平均间隔 时间(MTBF)等,吸引着用户将原来的系统转移到此项技术。MIL-STD-1553 的市场可能随着这种趋势而繁荣起来 ;事实上,某些客户已经觉得这项技术的实施有点姗姗来迟。   MIL-STD-1553 核心带来了多种好处,它代表着彻底告别了 ASIC 传统。FPGA 中加入一项知识产权核心,就获得了一种与众不同的特性,而成为一个非常专业的高级子系统。这为增强 MIL-STD-1553 的设计提供了千载难逢的机会。    系
[工业控制]
FPGA+DSP导引头信号处理中FPGA设计的关键技术
1 引言 随着同防工业对精确制导武器要求的不断提高,武器系统总体设计方案的日趋复杂,以及电子元器件水平的飞速发展。导引头信号处理器的功能越来越复杂,硬件规模越来越大.处理速度也越来越高.而且产品的更新速度加快,生命周期缩短。实现功能强、性能指标高、抗干扰能力强、工作稳定可靠、体积小、功耗低、结构紧凑合理符合弹载要求的导引头信号处理器已经势在必行。过去单一采用DSP处理器搭建信号处理器已经不能满足要求.FPGA+DSP的导引头信号处理结构成为当前以及未来一段时间的主流。   FPGA和DSP处理器具有截然不同的架构,在一种器件上非常有效的算法.在另一种器件上可能效率会非常低。如果目标要求大量的并行处理或者最大的多通
[安防电子]
FPGA+DSP导引头信号处理中<font color='red'>FPGA设计</font>的关键技术
牛人的FPGA设计经验分享
这里我谈谈我的一些经验和大家分享,希望能对 IC设计 的新手有一定的帮助,能使得他们能少走一些弯路!   在IC工业中有许多不同的领域,IC设计者的特征也会有些不同。在A领域的一个好的IC设计者也许会花很长时间去熟悉B领域的知识。在我们职业生涯的开始,我们应该问我们自己一些问题,我们想要成为怎样的IC设计者?消费?PC外围?通信?微处理器或DSP?等等?   IC设计的基本规则和流程是一样的,无论啥样的都会加到其中。HDL,FPGA和软件等是帮助我们理解芯片的最好工具。IC的灵魂是知识。因此我们遇到的第一个挑战将是获得设计的相关信息,然后理解信息并应用它。   但是有些信息不是免费的,我们需要加入一些协会或从如
[嵌入式]
新思科技Synopsys与高云就FPGA设计软件签署多年OEM协议
Synopsys Synplify Pro 综合工具为高云半导体的FPGA用户提供最佳设计质量。 美国加利福尼亚州山景城,2014年10月-- 亮点 此项持续多年的合作协议为高云半导体(Gowin)的FPGA用户提供了Synopsys的Synplify Pro高品质FPGA逻辑综合工具,以完成高性能的、高性价比的FPGA设计 Synplify Pro针对Gowin GW2AFPGA系列进行了优化,以加快设计实现时间;并在加速FPGA开发的同时,面向成本和功耗进行面积优化 与GOWIN设计套件的整合,为使用者实现FPGA提供了一套统一的设计流程 为加速芯片和电子系统创新而提供软件、知识产权(IP)及服务
[嵌入式]
FPGA设计中的功率计算技巧
          随着工艺技术的越来越前沿化, FPGA器件拥有更多的逻辑、存储器和特殊功能,如存储器接口、 DSP块和多种高速SERDES信道,这些发展不断地对系统功率要求提出挑战。由此,设计师也许会想要拖一座冰山到电路板上,但这样一来IT人员就会面临一团乱麻的境地了。显然冰山是一个不切实际的玩笑,以下是一种可行的方案:使用工具来精确计算功率要求。          功率计算的关键是两方面:静态和动态功率。 尽管FPGA厂商承诺将提供切实可用的低功耗器件,但由于工艺技术从130纳米缩小到90纳米、65纳米或更加小的线条,晶体管固有的漏电加剧了,静态功耗也增加了。此外,使用FPGA时极高的系统性能要求使得动态功耗上升,动态功耗是
[电源管理]
<font color='red'>FPGA设计</font>中的<font color='red'>功率计算</font>技巧
一种扩频通信调制器的FPGA设计与仿真
近年来,随着经济的高速增长,无线通信得到了飞速地发展。由于扩展频谱信号具有抗干扰、保密、抗侦破和抗衰落等特点,扩频通信在军事无线通信领域(如测控通信)中被广泛应用;随着技术的成熟及成本的降低,其在民用通信市场上具有更广大的发展前景。 本文首先介绍了FPGA的设计思想及流程,然后以一种扩频通信调制器为例,描述了如何实现自顶向下的设计:包括调制器的顶层设计、划分的下一层基本单元的设计等,并重点分析了基本单元之一的PN码产生器的设计实现及仿真验证过程。 FPGA设计方法简介 FPGA技术的飞速发展,对国内的电子设计工程师提出了严峻的挑战,以往传统的设计方法,如单纯的原理图输入方法,已很难满足目前
[安防电子]
一种扩频通信调制器的<font color='red'>FPGA设计</font>与仿真
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved