1 前言
开关电源具有高效率、低功耗、体积小、重量轻等显著优点,现已成为稳压电源的主流产品。本文以电流型PWM控制芯片UC3844B设计了一种高效的单端反激式、4路隔离输出的辅助电源系统,并针对传统启动回路中直流母线侧能量浪费的缺点,设计了一种新型控制芯片启动回路。实验结果表明,设计的单端反激式开关电源具有良好的工作性能,改进型启动电路能够有效缩短启动时间,提高了电源效率。
2 UC3844B芯片介绍
UC3844B是一种高性能固定频率电流模式的PWM控制集成电路芯片。该集成电路的特点是:具有震荡器、温度补偿参考、高增益误差放大器、电流取样比较器和大电流图腾柱输出,是驱动功率MOSFET的理想器件。其内部结构及管脚图如图1所示[1]。
图1 UC3844B内部结构及引脚图
具有8脚双列直插封装的UC3844B芯片各引脚功能如下:1脚(COMP)是误差放大器的输出端,用于环路补偿;2脚(UFB)是误差放大器的反相输入,通常通过一个电阻分压器连接至开关电源输出;3脚(ISEN)是电流取样端,通常在功率开关管的源极串联一个小电阻作取样电阻,当取样电阻上的电压超过给定值时,UC3488B就关闭输出端;4脚(RT/CT)是振荡器,该引脚是外部定时电阻RT与定时电容CT的公共端,通过将电阻RT连接至8脚Vref以及电容CT连接至地,使振荡器频率和最大输出占空比可调,工作频率可达500kHz;5 脚(GND)是控制电路和电源的公共地;6 脚(OUT)是推挽输出放大器的输出端,该输出可直接驱动功率MOSFET的栅极,具有拉电流和灌电流的双向驱动能力,峰值电流高达1.0 A。 7脚(Vcc)是电源输入端;8脚(Vref)是参考输出引脚,它经过电阻RT向电容CT提供充电电流[2]。UC3844B还包括过压、欠压保护电路,当供电电源电压低于10V时,芯片停止工作。
3 开关电源原理及设计
3.1 开关电源的工作原理
开关电源的工作原理图如图2所示[3]。刚启动时UC3844B所需的+16V工作电压由R2、C3电路提供。220V交流电经桥式整流和电容滤波,得到+300V直流高压,在经R2降压后接U2的7脚,利用C3的充电过程使U2逐渐升至+16V以上,从而实现启动。当开关电源转入正常工作后,辅助绕组上的高频电压经过VD2、C4整流滤波,作为芯片的工作电压。UC3844B属于电流控制型PWM,初级绕组上的电流在电流检测电阻R10上建立的电压,加至电流检测比较器的同相端,与反相端的误差电压作比较,进而控制输出脉冲的占空比。考虑到开关功率管关断的瞬间,高压变压器的漏感会产生尖峰电压,现利用TVS、D5、R3、C2组成吸收回路,对开关功率管起保护作用。电压反馈回路主要由稳压芯片TL431、光耦PC817A构成,反馈信号由+5V输出端取得,通过TL431的稳压与光耦的隔离作用后,送入UC3844B的电压反馈引脚,控制输出电压的稳定。
图2 开关电源原理图
3.2 高频变压器设计
单端反激式变压器的技术参数如下:工作频率f=50kHz;开关电源变压器的最高和最低输入电压分别Umax=375V; Umin=120V最大工作占空比为Dmax=50%;整流二极管的正向压降VFVD=0.6V;输出4路隔离电压分别为:+5V/3A, ±5V/1A, 24V/0.5A。
(1)计算初级峰值电流
初级电流峰值Ipk:
(1)
式中:P0为变压器输出功率;η为变压器效率,通常取0.8。
(2)计算初级电感
一次侧电感LP:
(2)
(3)选择变压器磁芯
磁芯的选用采用AP法,可按下式计算:
(3)
通过上式计算,并留出足够的功率余量,我们选择EI30型变压器磁芯。
(4)计算初、次级绕组匝数
初级绕组:
(4)
式中:Ae为有效磁通面积;Aw为最大磁通密度。
次级绕组:
(5)
经过式(5)的计算可知:+5V输出的次级绕组匝数为5匝;±15V输出的次级绕组匝数为14匝;+24V输出的次级绕组匝数为22匝。
(5)计算气隙长度
变压器的气隙长度由下式确定:
(6)
3.3 尖峰电压吸收电路设计
功率MOSFET管在关断时会在变压器初级绕组上产生尖峰电压和反射电压,加上直流侧的高压,很容易损坏功率MOSFET管,这就必须加入箝位电路来箝位[4]。本设计中采用反向击穿电压为200V的瞬态电压抑制器P6KE200和反向耐压为 1 kV的RS1M型超快恢复二极管,同时采用RC阻容吸收回路,以减少尖峰电压。
3.4 改进的启动电路设计
如图3(a)所示,传统启动回路采用齐纳二极管DZ限制控制芯片UC3844的启动电源的给定,当控制芯片处于稳定工作状态时,直流母线侧的电流依然流经启动电路,造成不必要的能量损失。
图3 传统启动电路与改进启动电路的对比
为此,提出了一种改进的启动电路设计,如图3(b)所示。初始阶段,三极管Q导通,
直流母线电压Vi通过R16对电容C4充电,同时直流母线电压Vi通过电阻R15对电容C18充电,Vb处的电压最终稳定在如下电压:
Vb=12+Vi*R2/(R15+R2) (7)
由于R15□R2,可以简单的认为Vb≈12V。由于控制芯片UC3844的启动和关断电压为16V和10V,为了使Q能够在系统稳定工作后关断,必须满足以下条件:
(8)
三极管Q关断后,控制系统进入稳定的工作状态,芯片UC3844由反馈绕组进行供电,直流母线电流不在流经启动电路,大大减小了损耗。
4 实验结果及分析
按照上面的分析,设计了基于UC3844B的多路单端反激式开关电源。主要参数如下:开关频率f=50kHz,直流输入电压波动为120V□375V,直流多路输出电压为+5V/3A, +15V/1A, +24V/0.5A。图4是传统启动电路和改进启动电路的启动电压波形比较图。
由图可以看出,当启动电压达到16V时,UC3844B便进入稳定的工作状态,并最终稳定在12V。通过比较可以看出,传统的控制策略需要0.4s使其启动电压达到16V,而改进的控制策略仅仅需要0.1s,减小了启动时间,提高了控制效率。
图5是开关电源分别在轻载和重载的情况下,一次侧的峰值电流和MOSFET的驱动电压波形。由图可以看出,MOSFET的调整周期大约为22μs,即频率约为45kHz,占空比约为40%,满足设计要求。通过对比还可以看出,轻载时开关电源工作在不连续模式下,一次侧电流从零开始增加;重载时开关电源工作在连续模式下,一次侧电流未通过零点,有一定的起始值。
图4 传统和改进启动电路的启动电压波形比较图:(a)传统启动电路;(b)改进的启动电路
图5 不同负载下的初级电流和触发脉冲波形: (a)轻载;(b)重载
5 结论
本文采用电流型脉宽调制芯片UC3844B,设计了一种单端反激式多路隔离输出辅助电源系统,并对其启动电路进行了改进。实验结果表明,改进的启动电路启动时间明显缩短,大大减小了能量浪费,同时开关电源工作稳定,满足设计要求,具有一定实用性。
参考文献
[1] 马洪涛,沙占友,周芬萍.开关电源制作与调试[M].北京:中国电力出版社,2010.
[2] 程海龙,李玉忍,梁波.基于UC3842的电源变换器 设计[J].电源技术,2011,(35):720-722.
[3] 咸庆信.变频器使用电路图集与原理图说[M].北京:机械工业出版社,2009.
[4] 吴国平,杨仁刚,杜海江.一种基于NCP1014的反激式开关电源设计研究[J].电力电子技术,2010,(44):78-50.
[5] Liang Cheng, Yunyue Ye, Zhou Zheng. Design of Improved Single Phase Flyback Switching
Power for PMSM Drive System[J]. IEEE Transaction on IE, 2011.
作者简介
李大鹏(1988-) 男,山东济宁人,硕士研究生,研究方向为电力电子及其电气传动。■
上一篇:基于改进启动回路的反激式开关电源设计
下一篇:基于NCP1927的平板电视开关电源设计
推荐阅读最新更新时间:2023-10-17 15:04
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC