基于DSP的三相SPWM变频电源的设计

最新更新时间:2013-06-10来源: 世界电子元器件关键字:DSP  SPWM  变频电源 手机看文章 扫描二维码
随时随地手机看文章
  引言

  变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。

  本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、系统扩展能力强等优点。

  系统总体介绍

  根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如图1所示。

图1 系统总体框图


  (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。

  (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可靠性高等特点。

  (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。

  (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完成对输出信号的测频。

  (5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。

  (6)辅助电源模块:为控制电路提供满足一定技术要求的直流电源,以保证系统工作稳定可靠。

  系统硬件设计

  变频电源的硬件电路主要包含6个模块:整流电路模块、IPM电路模块、IPM隔离驱动模块、输出滤波模块、电压检测模块和TMS320F28335数字信号处理模块。

  整流电路模块

  采用二极管不可控整流电路以提高网侧电压功率因数,整流所得直流电压用大电容稳压为逆变器提供直流电压,该电路由6只整流二极管和吸收负载感性无功的直流稳压电容组成。整流电路原理图如图2所示。

 

图2 整流电路原理图 


  IPM电路模块

  IPM由高速、低功率IGBT、优选的门级驱动器及保护电路组成。IGBT(绝缘栅双极型晶体管)是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低,非常适合应用于直流电压。因而IPM具有高电流密度、低饱和电压、高耐压、高输入阻抗、高开关频率和低驱动功率的优点。本文选用的IPM是日本富士公司的型号为6MBP20RH060的智能功率模块,该智能功率模块由6只IGBT管子组成,其IGBT的耐压值为600V,最小死区导通时间为3μs。

  IPM隔离驱动模块

  由于逆变桥的工作电压较高,因此DSP的弱电信号很难直接控制逆变桥进行逆变。美国国际整流器公司生产的三相桥式驱动集成电路IR2130,只需一个供电电源即可驱动三相桥式逆变电路的6个功率开关器件。

  IR2130驱动其中1个桥臂的电路原理图如图3所示。C1是自举电容,为上桥臂功率管驱动的悬浮电源存储能量,D1可防止上桥臂导通时直流电压母线电压到IR2130的电源上而使器件损坏。R1和R2是IGBT的门极驱动电阻,一般可采用十到几十欧姆。R3和R4组成过流检测电路,其中R3是过流取样电阻,R4是作为分压用的可调电阻。IR2130的HIN1~HIN3、LIN1~LIN3作为功率管的输入驱动信号与TMS320F8335的PWM连接,由TMS320F8335控制产生PWM控制信号的输入,FAULT与TMS320F8335引脚PDPINA连接,一旦出现故障则触发功率保护中断,在中断程序中封锁PWM信号。

 

图3 IR2130驱动其中1个桥臂的电路原理图 


   输出滤波模块

  采用SPWM控制的逆变电路,输出的SPWM波中含有大量的高频谐波。为了保证输出电压为纯正的正弦波,必须采用输出滤波器。本文采用LC滤波电路,其中截止频率取基波频率的4.5倍,L=12mH,C=10μF。

  电压检测模块

  电压检测是完成闭环控制的重要环节,为了精确的测量线电压,通过TMS320F28335的SPI总线及GPIO口控制对输入的线电压进行衰减/放大的比例以满足A/D模块对输入信号电平(0-3V)的要求。电压检测模块采用256抽头的数字电位器AD5290和高速运算放大器AD8202组成程控信号放大/衰减器,每个输入通道的输入特性为1MΩ输入阻抗+30pF。电压检测模块电路原理图如图4所示。

 

 图4 电压检测电路原理图


   系统软件设计

  系统上电后按照选定的模式自举加载程序,跳转到主程序入口,进行相关变量、控制寄存器初始化设置和正弦表初始化等工作。接着使能需要的中断,启动定时器,然后循环进行故障检测和保护,并等待中断。主要包括三部分内容:定时器周期中断子程序、A/D采样子程序和数据处理算法。主程序流程图如图5所示。

 

图5 主程序流程图 


   定时器周期中断子程序

  主要进行PI调节,更新占空比,产生SPWM波。定时器周期中断流程图如图6所示。

 

图6 定时器周期中断流程图 


  A/D采样子程序

  主要完成线电流采样和线电压采样。为确保电压与电流信号间没有相对相移,本部分利用TMS320F28335片上ADC的同步采样方式。为提高采样精度,在A/D中断子程序中采用均值滤波的方法。

  对A相电压和电流A/D的同步采样部分代码如下:

  interrupt void adc_isr(void)

  {

  if(counter==0)

  {

  receive_a0_data[i++] = AdcRegs.ADCRESULT0>>4; //右移四位

  receive_b0_data[j++] = AdcRegs.ADCRESULT1>>4; //右移四位

  }

  if(counter>=1)

  { // 对结果取平均,平滑滤波

  receive_a0_data[i++] = (receive_a0_data[i0++]+(AdcRegs.ADCRESULT0>>4))/2;

  receive_b0_data[j++] = (receive_b0_data[j0++]+(AdcRegs.ADCRESULT1>>4))/2;

  }

  if(i==512) {i=0;i0=0;}

  if(j==512) {j=0;j0=0; counter++;}

  AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // 复位排序器

  AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // 清中断标志位

  PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;// 开中断应答

  }
  数据处理算法

  本系统主要用到以下算法:(1)SVPWM算法(2)PID调节算法(3)频率检测算法

  SVPWM算法

  变频电源的核心就是SVPWM波的产生,SPWM波是以正弦波作为基准波(调制波),用一列等幅的三角波(载波)与基准正弦波相比较产生PWM波的控制方式。当基准正弦波高于三角波时,使相应的开关器件导通;当基准正弦波低于三角波时,使相应的开关器件截止。由此,逆变器的输出电压波形为脉冲列,其特点是:半个周期中各脉冲等距等幅不等宽,总是中间宽,两边窄,各脉冲面积与该区间正弦波下的面积成比例。这种脉冲波经过低通滤波后可得到与调制波同频率的正弦波,正弦波幅值和频率由调制波的幅值和频率决定。

  本文采用不对称规则采样法,即在三角波的顶点位置与低点位置对正弦波进行采样,它形成的阶梯波更接近正弦波。不规则采样法生成SPWM波原理如图7所示。图中,Tc是载波周期,M是调制度,N为载波比,Ton为导通时间。

  由图7得:

  

  当k为偶数时代表顶点采样,k为奇数时代表底点采样。

  SVPWM算法实现过程:

  利用F28335内部的事件管理器模块的3个全比较单元、通用定时器1、死区发生单元及输出逻辑可以很方便地生成三相六路SPWM波形。实际应用时在程序的初始化部分建立一个正弦表,设置通用定时器的计数方式为连续增计数方式,在中断程序中调用表中的值即可产生相应的按正弦规律变化的SPWM波。SPWM波的频率由定时时间与正弦表的点数决定。

  SVPWM算法的部分代码如下:

  void InitEv(void)

  {

  EALLOW;

  GpioMuxRegs.GPAMUX.all=0x00FF;

  EDIS;

  EvaRegs.EVAIFRA.all = 0xFFFF; // 清除中断标志

  EvaRegs.T1PR= 2500; //定时器1周期值,定时0.4us*2500=1ms

  EvaRegs.T1CMPR = XPWM; //比较值初始化

  EvaRegs.T1CNT = 0; EvaRegs.T1CON.all = 0xF54E; //增模式, TPS系数80M/32=2.5M,T1使能,

  EvaRegs.ACTR.all = 0x0006; //PWM1,2低有效

  EvaRegs.DBTCONA.all = 0x0534; //使能死区定时器1,分频80M/32=2.5M,死区时

  //间5*0.4us=2us

  EvaRegs.COMCONA.all = 0xA600; //比较控制寄存器
  
  EvaRegs.EVAIMRA.all = 0x0080;

  }

  PID调节算法

  在实际控制中很多不稳定因素易造成增量较大,进而造成输出波形的不稳定性,因此必须采用增量式PID算法对系统进行优化。PID算法数学表达式为

  Upresat(t)= Up(t)+ Ui(t)+ Ud(t)

  其中,Up(t)是比例调节部分,Ui(t)是积分调节部分,Ud(t)是微分调节部分。

  本文通过对A/D转换采集来的电压或电流信号进行处理,并对输出的SPWM波进行脉冲宽度的调整,使系统输出的电压保持稳定。

  PID调节算法的部分代码如下:

  float PIDCalc( PID *pp, int NextPoint )

  {

  int dError,Error;

  Error=pp->SetPoint*10-NextPoint; // 偏差

  pp->SumError+= Error; // 积分

  dError=pp->LastError-pp->PrevError; // 当前微分

  pp->PrevError = pp->LastError;

  pp->LastError = Error;
  
  return

  ((pp->Proportion) * Error // 比例项

  + (pp->Integral) * (pp->SumError) // 积分项

  + (pp->Derivative) * dError); // 微分项

  }

  频率检测算法

  频率检测算法用来检测系统输出电压的频率。用TMS320F28335片上事件管理器模块的捕获单元捕捉被测信号的有效电平跳变沿,并通过内部的计数器记录一个周波内标频脉冲个数,最终进行相应的运算后得到被测信号频率。

  实验结果

  测量波形

  在完成上述硬件设计的基础上,本文采用特定的PWM控制策略,使逆变器拖动感应电机运行,并进行了短路、电机堵转等实验,证明采用逆变器性能稳定,能可靠地实现过流和短路保护。图8是电机在空载条件下,用数字示波器记录的稳态电压波形。幅度为35V,频率为60Hz。

 

图7 不规则采样法生成SPWM波原理图 

 

图8 输出线电压波形 


  测试数据

  在不同频率及不同线电压情况下的测试数据如表1所示。
  

表1 不同输出频率及不同线电压情况下实验结果 

 


  结果分析

  由示波器观察到的线电压波形可以看出,波形接近正弦波,基本无失真;由表中数据可以看出,不同频率下,输出线电压最大的绝对误差只有0.6V,相对误差为1.7%。

  结束语

  本文设计的三相正弦波变频电源,由于采用了不对称规则采样算法和PID算法使输出的线电压波形基本为正弦波,其绝对误差小于1.7%;同时具有故障保护功能,可以自动切断输入交流电源。因此本系统具有电路简单、抗干扰性能好、控制效果佳等优点,便于工程应用,具有较大的实际应用价值。

关键字:DSP  SPWM  变频电源 编辑:探路者 引用地址:基于DSP的三相SPWM变频电源的设计

上一篇:语音分离器和分离器板的发展与应用
下一篇:LED手电筒驱动电路原理

推荐阅读最新更新时间:2023-10-17 15:44

DSP控制器构成的大功率UPS并联系统设计
  1、引言   本文介绍一种基于TI公司的TMS320C240 DSP控制器构成的大功率并联型UPS同步控制方案。与电网的同步、并联系统中各台UPS间的同步,成为并联UPS系统控制的关键。UPS并联系统中的核心部分是精度很高的锁相环,模拟锁相环是一门成熟的技术,以它独特的优良性能在许多领域得到了广泛地应用。但随着数字技术的发展,UPS的全数字化控制是大势所趋,因此,锁相环也逐渐过渡为数字化,数字DSP控制锁相环相对于模拟锁相环实现起来更方便,同时用软件代替硬件实现,还可以结合系统的其他功能统一设计,节省成本。    2、TMS320C240 DSP控制器介绍   TMS320C240是美国TI公司专为数字电机控制运用
[电源管理]
<font color='red'>DSP</font>控制器构成的大功率UPS并联系统设计
嵌入式机器视觉系统中ARM与DSP的数据通信方法
DSP对数字信号和数值算法具有强大的运算处理能力,因而在信号采集与处理中被广泛应用,但其在任务管理、实时控制、人机交互等方面不占优势。而ARM微控制器则控制功能强大,可以加载嵌入式操作系统,且能够提供良好的人机交互、任务管理、网络通信等方面功能。因此,发挥DSP和ARM处理器各自的优势,采用ARM+DSP结构的设计方案已成为嵌入式系统的研究热点,倍受关注。通过嵌入式机器视觉系统的设计实例,阐述ARM与DSP有机结合的设计思想,重点研究ARM与DSP之间的数据通信。 1 嵌入式机器视觉系统总体方案 采用ARM+DSP结构的机器视觉系统总体结构如图l所示。以三星公司高性能ARM处理器S3C2440作为主控制器,配置并移植Linu
[单片机]
嵌入式机器视觉系统中ARM与<font color='red'>DSP</font>的数据通信方法
基于DSP的轨道移频信号解调实现
文中采用了单片DSP器件TMS32F2812,通过对轨道移频信号解调算法的研究,使设计系统具有集成度高、实时性好、抗干扰能力强和可靠性高等优点。   1 系统的整体设计   系统采用了TMS32F2812处理芯片,主频高达150 MHz,时钟周期为6.67 ns。2×8的ADC转换通道。SPI串口。两个1 kb×16 SARAM等模块,这些模块易于实现ADC的采样、主从控制芯片的数据交换和FFT变换所需要的大容量SARAM空间。   本系统总体设计如图1所示。采用双机热备,两路同时对调理后的FSK信号采样和解调,比较一致输出,这样可提高系统的可靠性。      2 主要技术实现
[嵌入式]
基于<font color='red'>DSP</font>的轨道移频信号解调实现
SA8281型SPWM波发生器原理及在变频器中的应用
1 引言 脉宽调制技术通过一定的规律控制开关元件的通断,来获得一组等幅而不等宽的矩形脉冲波形,用以近似正弦电压波形。脉宽调制技术在逆变器中的应用对现代电力电子技术、现代调速系统的发展起到极大的促进作用。 近几年来,由于场控自关断器件的不断涌现,相应的高频SPWM(正弦脉宽调制)技术在电机调速中得到了广泛应用。SA8281是MITEL公司推出的一种用于三相SPWM波发生和控制的集成电路,它与微处理器接口方便,内置波形ROM及相应的控制逻辑,设置完成后可以独立产生三相PWM波形,只有当输出频率或幅值等需要改变时才需微处理器的干预,微处理器只用很少的时间控制它,因而有能力进行整个系统的检测、保护和控制等。基于SA8281和89C
[单片机]
SA8281型<font color='red'>SPWM</font>波发生器原理及在<font color='red'>变频</font>器中的应用
德州仪器在KeyStone多核DSP上实施H.265
    日前,德州仪器 (TI) 宣布推出一款基于业界最新视频编码标准 H.265 的前期制造编解码器。该器件针对 TI 基于 KeyStone 的多核数字信号处理器 (DSP) TMS320C6678 进行了优化。H.265 标准经过精心设计,可充分发挥并行处理优势,使 C6678 多核 DSP 成为理想的 H.265 实施平台,通过其 8 个 1.25 GHz DSP 内核实现 320 GMAC 与 160 GFLOP 混合定浮点性能。 TI 基于软件的 H.265 标准实施可为客户新增编解码器差异化特性以及其它预处理和后处理算法提供充足的空间。此外,TI 设计方案还可在开发实时视频基础设施设备(如多媒体网关、IMS 媒体服
[嵌入式]
毫米波传感器让汽车应用和工业电子效率升级
世界瞬息万变,无论是道路、楼宇还是我们所生活的城市,这种高速的变幻可见一斑。   全新的高精度单芯片毫米波(mmWave)传感器正在顺应世界高速发展的潮流,为从汽车 雷达 到工业自动化的众多应用提供支持。这些精密的传感器为设计人员带来了全新的平台,能够帮助汽车、楼宇、工厂和无人机实现更高的智能化、安全性和自主性。例如 毫米波传感器 这样的技术进步犹如一场及时雨。之所以这样说,是基于以下几个塬因:   · 到2020年,公路上自动驾驶汽车的数量或将达到1000万辆。   · 56%的工业企业将在未来五年内实现效率升级。   · 到2020年,81%的住宅和楼宇将实现自动化。     这些变化将对精确感测能力提出更高的要求,不仅要求
[嵌入式]
DSP系统串口扩展
在研制无线分组网络路由控制器时,采用了双DSP结构进行数据处理,另外还需扩展8个串口,很显然这是DSP本身所无法解决的,故必须进行串口扩展。 常用串口扩展方法: 从本质上讲,所有的 串口扩展 接口电路都是以并行数据形式与CPU接口,而以串行数据形式与外部逻辑接口。它们的基本功能是从外部逻辑接收串行数据,转换成并行数据后传送给CPU;或者从CPU并行输出的数据,转变成串行数据后输出给外部逻辑。串行通信接口电路至少包括一个接收器和一个发送器,而接收器和发送器都分别包括一个数据寄存器和一个移位寄存器,以便实现CPU输出→并行→串行→发送或接收→串行→并行→CPU输入操作。 串口扩展的方法一般有三种,一是全部
[嵌入式]
利用TL16C750实现DSP与PC机的高速串行通信
    摘要: TL16C750是TI公司生产的异步通信芯片,在通信系统的实时性要求较高时,可通过扩展异步通信芯片TL16C750来实现系统的高速串行通信,从而增强系统的通信接口控制能力。文中介绍了TL16C750的性能及与通信有关的寄存器,给出了TL16C750在TMS320C50与PC机通信系统中的硬件应用电路及TMS320C50初始化TL16C750的软件编程。      关键词: 数字信号处理  通信接口  扩展  异步通信  TL16C750     通用数字信号处理器(DSP)以其很强的数据处理能力使其在高速数字信号处理方面得到广泛的应用,但是它的通信接口控
[工业控制]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved