EoPDH转换器的优势与应用

最新更新时间:2013-07-18来源: 与非网关键字:EoPDH  转换器 手机看文章 扫描二维码
随时随地手机看文章

1 引言

由于以太网技术的成熟和低成本优势,以太网接入方式已经成为很多用户的首选。最早的客户采用以太网到E1的转换器,占用某几个64kbit/s的时隙,而后逐步扩展到整个E1,速率达到2.048Mbit/s。随着图像等业务的引入,单E1已经不再能满足客户的需要。因此将多个E1捆绑后承载以太网的技术应运而生。近年来这种反向复用技术越来越多地引起了客户的关注。由于标准的相对滞后,有多个厂家先后推出了类似的产品。虽然增加了以太网在广域网上的传输手段,但由于制式不一,在使用和维护方面也带来了诸多不便。

2 EoPDH的产生

目前,在市场上流行的ETH至E1转换器绝大多数依然采用高速数据链路协议(HDLC)作为封装方式,而封装后的数据帧如何分配到各E1通道上等具体的处理过程则由各厂商自己定义,这就给不同厂商设备的互联制造了障碍。同时,由于在封装方式、链路调整机制、延时差等问题上没有统一的定义和要求,使业务传输质量难以得到保证。

为了能够更好地解决以上问题,符合国际电联标准的EoPDH应运而生,并通过如下标准对EoPDH的细节进行了规范:G.7041定义了封装格式(GFP-F);G.7042定义了虚级联(VCAT)及链路容量调整规范(LCAS);G.7043和G.8040定义了VCAT&LCAS到E1的映射方式;以太网接口要求符合IEEE 802.3标准的规定;E1接口要求符合G.703,G.704,G.823标准的规定。通过以上标准,使不同厂商的转换器互通成为了可能,同时通过对级联方式、容量调整、映射方式、E1间延时差等问题的具体定义,使业务的传输质量得到了更好的保证。

3 RAYCOM的EoPDH芯片特点及应用模式

基于以上标准,北京润光泰力科技发展有限公司(RAYCOM CO.,LTD.)经过多年的辛勤努力开发出了RC6105(1VCG 5E1),RC6116(1VCG 16E1),RC6621F(6VCG 21E1)等一系列EoPDH ASIC芯片, 为解决相关的技术难题做出了自己的贡献。

3.1 RAYCOM的EoPDH芯片特点

RAYCOM的EoPDH芯片族为广大设备制造商的转换器互通及业务质量保障提供了更加有竞争力的解决方案,芯片的功能框图如图1所示。同时,RAYCOM的EoPDH芯片还具有如下特点:

图1 RC6116芯片功能框图

(1)提供了基于OAM帧的管理。
  (2)提供了特有网管通道:即基于E1中SA比特的三种类型的网管通道,使配置和应用更加灵活。
  (3)通过对寄存器进行优化,使设置操作简单,方便对芯片设计的理解和软件开发。
  (4)E1链路延时差可达224ms。
  (5)默认配置即可互通,方便设备制造商进行板级调试。
  (6)与FPGA方案相比,ASIC方案具有电源种类少、功耗小、可靠性高等特点。

3.2 应用模式

应用该方案的设备厂商均通过了中国移动在2009年进行的协议转换器入围测试。同时,RAYCOM的EoPDH解决方案也帮助众多的设备制造商在国内外的其它招标中取得了优异的测试评分。在实际组网过程中,该方案的应用模式主要有以下两种:

(1)点对点应用(见图2)

图2 EoPDH 点对点应用

通过1-16路E1传输以太网信号,穿越传输网,实现点对点的以太网业务互通。

(2)星型组网

如图3所示,通过润光泰力自主研发的RC6621F(6VCG 21E1 GFP)和RC7240F(16MII 16E1 HDLC)实现了对客户端EoPDH转换器及传统HDLC转换器(RC7222)的汇聚。尤其是在RC6621F和RC7240F的应用方案中加入了RAYCOM的单芯片SDH解决方案RC7880(STM-1×2,24E1,STB×2,内置时钟及CDR,内嵌DCN×2)构建的局端汇聚芯片组解决方案,使设备制造商在局端可以构建出汇聚比高、体积小、功耗低、节省局方路由器端口、省去大量E1电缆的新型汇聚型设备,一经推出即得到了市场的广泛好评。

图3 EoPDH 星型组网应用

4 结束语

通过在接入网专用ASIC领域不断耕耘的10年,RAYCOM不但开发了完善的Converter,PDH,SDH,EOP和EOS等产品系列,还可以提供全套的MSAP芯片组解决方案。我们期望通过提供完善的参考设计和贴心的技术支持服务,能够协助广大的设备制造商更快更好地进行方案设计。如您对RAYCOM的任何技术方案感兴趣,欢迎您登录www.raycom.com.cn,我们将通过专业的技术支持为您提供量身定制的系统解决方案。

关键字:EoPDH  转换器 编辑:探路者 引用地址:EoPDH转换器的优势与应用

上一篇:设计降压转换器
下一篇:DC-DC转换器原理及应用

推荐阅读最新更新时间:2023-10-12 22:22

ZETA转换器电路图
 图 1 显示了 ZETA 转换器的简单电路图,其由一个输入电容 CIN、一个输出电容 COUT、耦合电感 L1a 和 L1b、一个 AC 耦合电容 CC、一个功率 PMOS FET 即 Q1,以及一个二极管 D1 组成。   图 1 ZETA 转换器的简单电路图   
[电源管理]
ZETA<font color='red'>转换器</font>电路图
精确的温度至比特转换器解决了温度传感器测量难题
尽管温度是我们生活的基本方面,但是温度难以准确测量。在现代电子产品时代到来之前,伽利略 (Galileo) 发明了能够检测温度变化的基本温度计。两百年后,席贝克 (Seebeck) 发现了热电偶,这种器件能够产生以不同金属的温度变化率为函数的电压。如今,常常利用热电偶以及受温度影响的电阻元件 (RTD 和热敏电阻器) 和半导体元件 (二极管) 以电子方式测量温度。尽管从这些组件获取温度的方法已为大家熟知,但是以好于 0.5 C 或 0.1 C 的准确度测量温度依然富有挑战性 (参见图 1)。 图 1:LTC2983 的温度准确度 要数字化这些基本传感器元件,就需要专门的模拟电路设计、数字电路设计和固件开发技术。
[电源管理]
精确的温度至比特<font color='red'>转换器</font>解决了温度传感器测量难题
教你如何选择最佳的开关式DC/DC转换器
利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量就是开关电源。其输出的功率或电压的能力与占空比(由开关导通时间与整个开关的周期的比值)有关。开关电源可以用于升压和降压。 DC/DC转换器是利用MOSFET开关闭合时在电感器中储能,并产生电流。当开关断开时,贮存的电感器能量通过二极管输出给负载。如下图所示:     三种典型的DC/DC变换器框图 所示三种变换器的工作原理都是先储存能量,然后以受控方式释放能量,从而得到所需要的输出电压。对某一工作来讲,最佳的开关式DC/DC变换器是可以用最小的安装成本满足系统总体需要的。这可以通过
[电源管理]
教你如何选择最佳的开关式DC/DC<font color='red'>转换器</font>
Mouser备货Maxim推出的业界最小的真双极性18位模数转换器
2013年5月9日 – Mouser Electronics, 已备货由Maxim Integrated推出的业界最小的真双极性+/-5V、18位模数转换器。MAX11156 SAR 模数转换器具有卓越的AC/DC性能以及真的双极性输入。 外形更加小巧的Maxim器件具有内部参考电压,在5V单电源供电条件下可测量±5V (10VP-P)范围内电压。荣获专利的电荷泵架构可实现对高阻抗输入源的直接采样。MAX11156可确保18位无失码分辨率,兼容SPI串行接口,支持2.5V、3V、3.3V或5V逻辑电平。该Maxim模数转换器特别适用于数据采集系统、工业控制系统/过程控制、医疗器械和自动测试设备。有关MAX11156的更
[模拟电子]
DC/DC设计原理、经验与应用技巧总结
“绿色”系统的发展趋势不仅意味着必须采用环保元器件,还对电子产业提出了节能的挑战。能源之星(EnergyStar)和80+等组织都已针对各式消费电子(特别是计算类)颁布了相关规范。对当前的消费者而言,更长的电池寿命也是个十分吸引的特性。因此,更长的电池寿命、更小的外形尺寸及各国政府推出的新法规都在要求必需谨慎选择电源元件,尤其是对板上的DC-DC转换器。这表示着新平台的功率密度、效率和热性能必须大幅提高。   众所周知,设计理想的DC-DC转换器涉及到众多权衡取舍。功率密度的提高通常意味着总体功耗的增加,以及结温、外壳温度和PCB温度的提升。同样地,针对中等电流到峰值电流优化DC/DC电源,几乎也总是意味着牺牲轻载效率,反
[电源管理]
DC/DC设计原理、经验与应用技巧总结
刺激汽车容性传感器应用的转换器测量方法
电容/数字转换器容许利用容性传感器的优点,包括:简单的形状适应、低的功耗和有利的制造成本以及便于控制和读出的优点。过去,汽车电子系统很少采用容性传感器,因为它们被认为难以控制、难以读出、容易老化且易受温度影响;另一方面,它们有利的制造成本、简单的形状适应能力和低的功耗却是为它们的应用提供动机的有吸引力的属性。新的测量技术的出现,使汽车中容性传感器的数据急剧增加。 面临的挑战 宏观上看搜企网版权所有,对容性传感器的分析通常是通过把它们的电容转换为另一种物理变量—如电压、时间或频率—来进行的。微观上看,容性传感器已经在汽车中使用了很长时间,微机电加速传感器就是根据这个原理。这些传感器常被用于检测电荷转移。 感应电容的
[测试测量]
刺激汽车容性传感器应用的<font color='red'>转换器</font>测量方法
使用低侧PWM IC的降压转换器
  最常见的开关电源结构是降压转换器,它能高效地将高电压转换为低电压。图1给出了一个典型的降压转换器,其中N沟道MOSFET Q1需要一个浮栅驱动信号。浮栅驱动是PWM(脉宽调制)控制器IC的一部分。根据控制器的设计,Q1可以是N沟道或者是P沟道。遗憾的是,IC的额定电压必须与输入电压同高,这限制了它可以处理的极限最高电压。   图2中的电路采用一个简单的电压电平移位器,用一个降压转换器控制一个带低侧IC的导通晶体管,该IC有以地为基准的栅极驱动。由于PWM IC中的电平移位电路不用承受大电压,因此可以实现任意高输入电压的转换器。   带低侧栅极驱动的PWM IC可以为N沟道MOSFET供电,当它们有正
[电源管理]
使用低侧PWM IC的降压<font color='red'>转换器</font>
高速模数转换器动态参数的定义和测试
    摘要: 随着集成工艺的发展,高速模数转换器的性价比不断提高,其应用范围也越来越广,特别是在通信领域,高速ADC的发展为软件无线电技术奠定了基础。本文主要讨论高速ADC测试方法,以MAXIM新一代3V、10位高速模数转换器的测试为基础,详细讨论硬件的配置、软件工具和用于数据采样和分析的仪器。     关键词: ADC  动态参数     高速模数转换器(ADC)的参数定义和描述如表1所示。 表二 动态参数定义 动态参数 描    述 信噪比(SNR) SNRdB=6.02 N+1.763 信号与噪声+失真之比(SINAD) SINADdB=20 l
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved