DSP和OZ890构成的电池管理系统设计

最新更新时间:2013-07-28来源: 与非网关键字:DSP  OZ890  电池 手机看文章 扫描二维码
随时随地手机看文章

本设计主要实现数据采集、电池状态计算、均衡控制、热管理、各种通信以及故障诊断等功能。

1 电池管理系统硬件组成

电池管理系统电路由电源模块、DSP 芯片TMS320LF2407A[1](简称为“LF2407”)、基于多个OZ890[2]的数据采集模块、I2C[3]通信模块、SCI 通信模块、CAN 通信模块组成。系统硬件框图如图1 所示。

图1 系统硬件组成框图

1.1 电源模块

整车提供的电源为+12V,管理系统需要的电压包括:+3.3V(DSP,隔离电路用)、+5V(总线驱动等芯片用)、±15V(电流传感器),可以通过DC-DC 转换得到,这样不但可以满足各个芯片的供电要求而且可以起到隔离抗干扰的作用。

1.2 数据采集模块

由DSP 完成总电压、电流及温度的采集。电池单体电压的采集和均衡由OZ890 芯片完成,并利用I2C 总线发给DSP,本模块电路主要包括前端采集处理和均衡电路。

1.3 I2C 通信模块

OZ890 采样模块将采集处理后的数据通过I2C 总线发送到LF2407,由于LF2407 自身不带I2C 接口,本设计利用PCA9564[4]扩展其I2C 接口。为了防止电磁干扰影响I2C 总线上数据的传输,必须对总线信号进行隔离,考虑到I2C 总线是双向传输的,使用ADuM1250双向隔离芯片进行隔离。PCA9564 及双向隔离电路如图2 所示。

图2 PCA9564 及双向隔离电路

PCA9564 是I2C 总线扩展器,与LF2407 的GPIO 口相连,它支持主从模式的数据收发,在BMS 中设定LF2407 为主器件,OZ890 位从器件。LF2407 通过读写PCA9564 内部四个寄存器的内容来与OZ890 通信。

ADuM1250 是热插拔数字隔离器,包含与I2C 接口兼容的非闩锁、双向通信通道。这样就不需要将I2C 信号分成发送信号与接收信号供单独的光电耦合器使用。

1.4 串口通信模块

电池管理系统将采集处理后的数据通过串口发送到PC 机界面上,实现人机交互。通过串口界面,可以观察到电池的总电压、单体电压、电流、SOC、故障状态、充放电功率等参数,还可以通过串口发送实现管理系统的在线标定。其硬件电路主要基于MAX232 芯片,如图3a)所示。

图3 串口通信接口电路

MAX232 是+5V 电源的收发器,与计算机串口连接,实现RS-232 接口信号和TTL 信号

的电平转换,使BMS 和PC 机能够进行异步串行通讯。为了防止电磁干扰影响串口上数据的传输,必须对总线信号进行隔离。串口是单向传输,所以利用6N137 光电耦合较为方便,图3b)所示为232TXD 信号光耦隔离电路。

1.5 CAN 通信模块

CAN 通信是架接电池管理系统(BMS)与整车HCU 之间的信息桥梁,BMS 将电池的状态参数通过CAN 总线发给HCU,HCU 通过判断当前的电池状态来做出决策,分配电机和发动机之间的功率,控制电池的充放电。同时BMS 还可以接收HCU 发来的相关命令,做出相应的处理。其硬件方面主要是通过PCA82C250 通用CAN 收发器来提供对总线数据的差动发送能力和对通信总线数据的差动接收能力。通过类似于图3b)的光耦隔离电路来加强CAN 总线上的抗干扰能力。其硬件电路由图4 所示。

图4 CAN 通信接口电路

在电路中可根据整车要求,是否接入120Ω 的终端电阻,当JP201 跳线接1 脚和2 脚时,不接入电阻,当接2 脚和3 脚时,电阻接入。

2 电池管理系统的软件设计

电池管理系统软件[6]系统包括6 个任务和5 个中断。6 个任务包括:AD 转换处理任务(包括读取OZ890 中的数据)、CAN 接收任务、CAN 发送任务、SOC 计算任务、系统监视故障诊断任务和串口发送任务。5 个中断包括:AD 采集中断服务子程序、Timer1 下溢中断服务子程序、周期中断子程序、CAN 总线接收中断服务子程序和串口接收中断服务子程序,如下面的中断向量表所示:

.ref _c_int0

.ref _ADC, _INT2, _INT5

.sect ".vectors"

rset: B _c_int0;00h reset

int1: B ADC ;02h ADC

int2: B _INT2 ;04h 周期、下溢中断

int3: B int3 ;06h INT3

int4: B int4 ;08h INT4

int5: B _INT5 ;0Ah CAN, SCI

int6: B int6 ;0Ch INT6

根据整车控制策略,CAN 上电池状态数据每帧的刷新周期为10ms,故设置周期中断的时钟节拍为10ms;相应地设置以上几个任务的执行周期均为10ms。

图5 周期时钟节拍图

从图5 中可以看出,系统初始化完成以后,Time1 开始计时,当达到5ms 时,在A 点发生周期中断,然后进入周期中断子程序,启动AD 转换,通过I2C 总线读取OZ890 中的数据。AD 转换完毕后,软件触发ADC 中断保存数据并进行相应的处理,清除周期中断标志。当达到10ms 时,发生下溢中断,进入下溢中断服务子程序,执行CAN 发送任务、SOC计算任务、系统监视故障诊断任务、串口发送任务。另外,CAN 接收和串口接收执行采用中断触发方式。利用周期中断和下溢中断来划分任务执行时间区域不仅能够满足整车10ms

每帧数据的CAN 发送要求,而且每一个任务时间也都能通过计数器和标志位的状态来计算任务的执行时间,以便更好的分配任务的执行时间段。

3 结论

电池管理系统采用了DSP+OZ890 的结构,加之相应的抗干扰措施,具有高性能、低成本等特点。由于采用了专门的电池采样芯片OZ890,提高了采样精度、解决了电池单体电压不均衡造成的过充问题。同时使硬件的开发周期大大缩短,增强了系统的可靠性和可维护性,在实际应用中取得了良好的效果。

本文作者创新点:使用OZ890 电池采样芯片测量电池数据,同时使用PCA9564 扩展LF2407 的I2C 接口,实现了LF2407 与OZ890 之间的通信。

关键字:DSP  OZ890  电池 编辑:探路者 引用地址:DSP和OZ890构成的电池管理系统设计

上一篇:基于锂离子的电池和充电器设计研究
下一篇:索尼充电电池,摇一摇就可以充电!?

推荐阅读最新更新时间:2023-10-12 22:23

艾迈斯半导体为单节锂电池供电产品推出200mA超紧凑型高效升
AS1383采用3.5MHZ固定开关频率,使外部组件小型化,适用于腕带等空间受限的产品 高性能模拟IC和传感器供应商艾迈斯半导体(ams AG,SIX股票代码:AMS)今日推出高效紧凑的升压转换器AS1383,可帮助延长单节锂电池供电设备的运行时间。 该转换器的输入电压范围为2.7V到5.5V,输出电压范围为2.7V到5.0V。用户可以选择可调电压版本,也可以选择工厂预编程的固定电压版本。根据输入电压的高低,该器件可提供最高达200mA的输出电流。 AS1383采用峰值电流PWM控制模式,可做到精确的线路调整及负载调整。内部集成的NMOS和PMOS功率管具备极低导通阻抗和闸极电容。这帮助
[电源管理]
孚能330Wh/kg新电池,有多厉害?怎么做到的?
日前,孚能科技公告了一款新电池——能量密度达到330Wh/kg。 孚能方面表示,其采用先进硅负极材料以及单壁碳纳米管导电剂和新型粘结剂配方进行设计的电化学体系,有效克服了硅膨胀的问题,达到超过1500次循环的能力。 此外,该电芯在零下 20℃温度下仍能提供 90%的容量。 孚能正申请权威检测机构按国家标准对其进行测试,预计测试周期约为3个月。测试后,即可销售使用。 这款电芯在目前业内水平如何?采用的又是什么技术? 1 电芯业内水平如何? 330Wh/kg或是企业已研发出最高能量密度电芯。 前几年就已经号称能量密度达到300Wh/kg的松下电池,为特斯拉Model3装载的电池单体,实际的能量密度在2
[汽车电子]
孚能330Wh/kg新<font color='red'>电池</font>,有多厉害?怎么做到的?
手机电池不够用?超级电容器或将引领下一代电池革命
超级电容器   超级电容器,是一种新型的具有远超传统电容器电容,以及超高储能密度的电容器。通过在两个隔离的极板上储存相反电荷,超级电容器可以储存大量的能量。与传统电容器不同,超级电容器不再使用固态电介质,而是使用静电双电层电容和电化学赝电容。静电双层电容使用碳材料电极达到传导电极和电解液的亥姆霍兹双层界面上的电荷分离,这种电荷分离在空间上达到埃的量级(0.3纳米~0.8纳米),远远小于传统电容器。 超级电容器示意图(图片来源:维基百科) 多层电极超级电容器示意图(图片来源:维基百科)   电化学赝电容器使用金属氧化物和高分子导电聚合物作为电极,借助氧化还原反应和电吸附中的感应电荷转移来实现超高的电荷存储,也是超级电容器
[家用电子]
手机<font color='red'>电池</font>不够用?超级电容器或将引领下一代<font color='red'>电池</font>革命
续航超600公里创新高,动力电池企业如何满足市场需求?
“里程焦虑”一直是新能源汽车行业发展的痛点之一,为了真正做到与传统燃油车续航里程相当,各大新能源车企联合动力电池企业不断探索更高续航里程。2019上海展会多家新能源汽车企业发布新品,其中纯电动乘用车最高续航里程超660公里。 特斯拉 MODEL 3采用日本松下电子提供的动力电池,单次充电续航里程达660公里;广汽Aion LX选用宁德时代811电池,系统能量密度180Wh/kg,NEDC续航超600公里;BYD唐 EV纯电续航能达600公里;小鹏P7于4月16日展位现场首发,NEDC最大续航里程超600公里。通过此次展会不难发现,续航里程600公里已成许多新能源汽车的现阶段目标之一。 从车展现场了解的情况来看,不少续航里程500
[汽车电子]
续航超600公里创新高,动力<font color='red'>电池</font>企业如何满足市场需求?
车用蓄电池技术专利全球分布图
    蓄电池是纯电动汽车的唯一能源,它除了供给汽车驱动行驶所需电能外,也是汽车上各种辅助装置的工作电源。蓄电池的各项性能指标很大程度地决定了汽车的行驶性能,如纯电动汽车的续驶里程和加速或爬坡动力性能等。因此,世界各国均将电动汽车电池视为研发重点,给予大力的政策以及财政支持。     自1970年Propulsion BatteriesLimited申请第一件纯电动汽车用蓄电池专利申请US3928080以来,几乎每年都有新专利申请被提交,尤其在1991年后,有关纯电动汽车用蓄电池的专利申请相较于之前成倍增长。     日本:目前,日本纯电动汽车用蓄电池的研究主要集中在锂电池,其次为铅酸电池、镍氢电池和钠电池等。从世界范围内
[汽车电子]
基于嵌入式的变电站蓄电池远程监测平台的设计与实现
0 引言 变电站蓄电池是变电站电力电源断电后的最后一道保护屏障,其运行状态关系到供电系统的安全性,因而对变电站蓄电池的监测也是保障电力系统稳定运行的重要措施之一。本文基于ARM嵌入式实现对蓄电池实时、智能的远程数据测量与控制。 嵌入式微处理器有许多种流行的处理器核,其中ARM以其小体积、高性能、低成本、低功耗等特点而得到广泛的应用,它已成为移动通信、手持设备、多媒体数字消费等嵌入式解决方案的RISC标准。根据嵌入式处理器类型还需配备一定的嵌入式操作系统。国外操作系统已经从简单走向成熟,有代表性的主要有VxWorks、Windows CE、Linux等。其中Linux操作系统具有开放的源代码、良好的用户界面、丰富的网络功能、可靠的系
[电源管理]
使用FPGA解决DSP设计难题
由于DSP能够迅速测量、过滤或压缩实时模拟信号,因此DSP在电子系统设计中非常重要。这样,DSP有助于实现数字世界与真实(模拟)世界的通信。但是随着电子系统变得越来越精细,需要处理多个模拟信号源,工程师们不得不作出艰难的决策。是使用多个DSP并使其功能与系统的其余部分同步,还是使用一个能够实现多个功能的带精细软件的高性能DSP更具优势? 由于现在的系统很复杂,在许多情况下,单DSP的实现方案的往往没有足够的处理能力。同时,系统架构也不能满足多芯片系统的成本、复杂性和功耗要求。 FPGA现已成为需要高性能DSP功能的系统的绝佳选择。事实上,与独立的数字信号处理器相比,FPGA技术一般可以为DSP难题提供更加简单的解决方案
[嵌入式]
使用FPGA解决<font color='red'>DSP</font>设计难题
蔡司工业CT三维扫描仪汽车电池解决方案
全球范围内,电动汽车市场快速增长。面对新能源汽车(NEV)日益增长的需求,制造商及其供应商必须加快工程研发设计及生产,而这对质量保证过程提出了新的挑战。 电池是与电动汽车的安全性和结构紧密相关的组件。因此,客户期望更高的容量,即每次充电的续航里程更长。 01质量控制至关重要 “电池是电动汽车的核心,制造商必须优先确保其质量,高度重视。” Albert Mo 蔡司新能源汽车解决方案技术中心负责人 如果想要制造可靠、具有长期使用寿命的电池,制造商必须遵循严格的质量标准:由于广泛成像、分析和测量解决方案对电池研究以及电池和电池托盘的质量控制至关重要,必须按照严格的公差标准制造电池芯、模块和电池托盘。 电池的质量保证是一个复杂的过
[嵌入式]
蔡司工业CT三维扫描仪汽车<font color='red'>电池</font>解决方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved