超宽带系统中ADC 前端匹配网络设计

最新更新时间:2013-08-03来源: 与非网关键字:前端匹配电路  德州仪器  超宽带 手机看文章 扫描二维码
随时随地手机看文章

引言

传统的窄带无线接收机,DVGA+抗混叠滤波器+ADC 链路的设计中,我们默认ADC 为高阻态,在仿真抗混叠滤波器的时候忽略ADC 内阻带来的影响。但随着无线技术的日新月异,所需支持的信号带宽越来越宽,相应的信号频率也越来越高,在这样的情况下ADC 随频率变化的内阻将无法被忽视。为了取得较好的信号带内平坦度,引入了ADC 前端匹配电路的设计,特别是对于non-input buffer的ADC在高负载抗混叠滤波器应用场景下,前端匹配电路的设计在超宽带的应用中就更显得尤为重要。本文将以ADS58H40为例介绍ADC前端匹配电路的设计。

Non-input buffer ADC 内阻特性及其等效模型

理想ADC 的输入内阻应该是高阻态,即在前端抗混叠滤波器的设计中无需考虑ADC 内阻带来的影响,但是实际ADC内阻并非无穷大并且会随着频率而发生改变。从输入内阻的角度而言,ADC又可以被分为两类,一个是有输入buffer的ADC,输入特性更趋向于理想ADC,内阻往往比较大;另一类就是没有输入buffer的ADC,它们的内阻在高频不可忽略且随频率发生改变,但它们的功耗比前者要小。图1为non-input buffer ADS58H40模拟输入等效内阻模型。ADC模拟输入端采样保持电路本身所等效的阻抗网络随频率的改变而变化;再加上ADC 采样噪声的吸收电路(glitch absorbing circuit)RCR 电路,它的存在改善了ADC 的SNR 和SFDR,但也使得ADC的内阻随着频率而越发变化。两者效应叠加使ADC 的等效负载整体呈现容性。

1 ADS58H40 模拟输入等效内阻模型


图2以ADS58H40为例给出了内阻随频率变化的曲线图。A串联模型,串联模型中的串联等效电阻值在Ohm量级。B并联模型,并联模型中的并联等效电阻值在低频(< 100MHz)的时候kOhm量级,但随着输入频率不断升高(>200MHz),并联等效电阻值会急剧下降到百欧姆级,使其相对于抗混叠滤波器ADC端负载不可忽略。而且不管是并联模型还是串联模型中的等效电容,也使得抗混叠滤波器ADC端负载特性偏离理想的阻性特征需要补偿。

2 ADS58H40 内阻简化模型:A 串联模型,B 并联模型;及其相关频率变化曲

 

Non-input buffer ADC 前端匹配网络拓扑架构
由于ADC 的等效内阻随频率变化而且在高频时偏离理想高阻态,抗混叠滤波器ADC端负载阻抗的选择就显得尤为重要。理想ADC支持抗混叠滤波器的负载的任意选择,完全没有要求。但是内阻的变化,使得现实中ADC希望前端的抗混叠滤波器的负载阻抗可以比较小,即传统50Ohm 抗混叠滤波器的设计,ADC的kOhm级的内阻相对于50Ohm而言可以忽略不计。但是现在越来越多的抗混叠滤波器需要100Ohm 的负载设计,以达到前端驱动级的最优工作状态。图5 以现在无线基站设计中常用的DVGA LMH6521 为例,为了使整个接收链路达到最优的线性性能,推荐使用100Ohm 的抗混叠滤波器。此时如果仍采用简单的100Ohm 负载并联在ADC 输入端的做法,随着输入信号频率的升高和输入信号带宽的增宽,ADC内阻非理想特性将越来越明显,它会直接拉低ADC 侧的100Ohm 负载,恶化信号的带内平坦度。

3 DVGA 最优工作状态负载要求示意图

为了统一抗混叠滤波器的设计以简化其在不同平台项目中的移植,希望ADC侧(包括ADC 等效内阻和前端匹配电路)在整个信号带宽中都呈现一致的阻抗特性例如图3 应用中的100Ohm, 引入了ADC 前端匹配网络如图4 所示。

 

4 Non-input buffer ADC 前端匹配网络拓扑架构简图

其中:

  1. R1和R2是ADC侧阻抗的主要组成部分,在假设ADC理想高阻特性的情况下,它即代表了ADC侧的负载。由于ADC有限内阻和所需的匹配网络,为了达到整体效果仍保持100Ohm负载状态,R1和R2远高于50Ohm的最优取值。R1和R2不仅决定了ADC输入pin脚的实际共模电压(VCM-Analog input common mode current*R1, ADC的性能SNR 和SFDR会随着VCM的变化而发生些许改变,请参见datasheet图22);而且原本也是sampling glitch的低阻泄放路径,所以不宜过大。R1和R2的取值原则为实现ADC端组合负载目标前提下的最小值,而且最大值不宜超过100Ohm。
  2. R5和R6代表ADC输入口串联的5Ohm或者10Ohm的阻尼电阻,为的是衰减可能由bonding wire寄生电感引起的震荡。
  3. 由R3-L1-L2-R4组成的网络主要是负责超宽带应用中的带内平坦度调整,它存在的意义在于此网络呈感性,阻抗随频率递增;它和随频率递减的ADC 等效内阻呈反方向变化,两项并联使整体阻抗在所需频率范围内尽量保持不变。如果觉得网络过于复杂,也可以考虑将L1 和L2 合并为一个电感断开VCM 连接;考虑分隔为两个电感仅是为VCM电流提供和R1+R2 并行的通路以减小VCM距理想值的偏移。
  4. R7-L3//C1-R8组成的网络则主要担负吸收sampling glitch的责任。在50Ohm负载抗混叠滤波器的应用中,50Ohm负载路径即相当于采样噪声的低阻泄放路径,所以R-L//C-R电路选配一般可以不加,但是当抗混叠滤波器的负载阻抗增加,例如上文中所提到的100Ohm抗混叠滤波器的应用,R-L//C-R的网络在性能要求较高的应用中建议采用。采样噪声是由采样开关的开关切换引起的。只有在ADC输入pin脚处直接引入低阻通路才可以有效的将其吸收,这就是为何RLCR 网络需要尽可能的接近ADC输入管脚布局。否则,采样噪声会在dither的作用下转化为影响ADC性能的噪声从而恶化SNR和SFDR。此吸收采样噪声电路的最主要的组成部分为电容,采样噪声多为高频分量组成,对其形成低阻通路即低通电路或带通电路(对有用信号为高阻,对高频噪声为低阻)。C的取值不易过小,过小影响吸收效果,同样也不易过大,过大会严重影响输入带宽。两端串联的R不易过大25Ohm为宜,并联的电感主要是降低Q值,有助于平坦带内波动。当R3-L1-L2-R4 和R7-L3//C1-R8网络共存的时候,出于带内平坦度的考量,需要移去L3形成R-CR网络。

简单的取值步骤及原则:

  1. 如果是传统的50Ohm抗混叠滤波器设计,R1和R2各取25Ohm,无需加入R-L-L-R网络,RL//C-R的网络选配。
  2. 如果是100Ohm及以上抗混叠滤波器设计。接收链路需要加入R-L//C-R,选配R-L-L-R网络(选配R-L-L-R 的时候,R-L//C-R 需要换为R-C-R);反馈链路则需要加入R-L-L-R。
  3. 首先需要根据性能测试结果选取R-L//C-R或者R-C-R网络中的C。以H40为例,RL//C-R网络C取10pF,R-C-R网络C取3.3pF可以有效滤除(中频IF小于350MHz 应用中的)高频采样开关噪声。网络中的R取25Ohm为宜,网络中L取值原则为使LC谐振腔在有用带宽中心附近形成谐振频率。
  4. 然后以R1 和R2 各为100Ohm为仿真起点,出于带内平坦度的考量,仿真选取R-L-L-R的值。再平坦度满足要求的情况下,尝试降低R1和R2的值,但是需要适当增加R-L-L-R的等效阻抗作为弥补,最后找到实现ADC端组合负载目标前提下的R1和R2的最小取值。

ADS58H40 前端匹配网络设计

ADS58H40是一款四通道14-bit, 250MSPS的高性能ADC,广泛应用在无线基站的设计中,即可以用在接收通道中,同样也可以应用在反馈通道中。这里以ADS58H40在100Ohm抗混叠滤波器负载的应用为例介绍前端匹配网络设计。

4.1接收链路拓扑架构

由于接收链路对性能指标要求高,R-C//L-R(R-C-R)的吸收采样噪声的网络必不可少,加之接收链路带宽较窄,对带内平坦度起调节作用的R-L-L-R 网络可以选配。这里Fs=245.76MSPS 采样率,中频3/4 Fs 184.32MHz,带宽80MHz,100Ohm 抗混叠滤波器负载应用为例。图5为以牺牲带内平坦度为代价的简化版前端匹配电路。R-L//C-R意在吸收采样噪声达到性能的最佳优化。C的取值以10pF为宜,L 的取值配合10pF,在所需带宽内形成谐振腔,对有用信号不衰减,对高频采样噪声起到吸收的作用。

5 Non-input buffer ADC 接收链路设计举例 A –最少的器件牺牲些许的带内平坦度

图6为性能和平坦度相折中的网络架构,网络架构较图5复杂,但是80MHz信号带宽内平坦度远远好于上图中的简化版本设计。由于前端R-L-L-R架构的存在,这里吸收采样噪声的R-L//C-R 简化为R-C-R,C的取值以3.3pF为宜。

 

6 Non-input buffer ADC 接收链路设计举例B 最优的带内平坦度

 

4.2 反馈链路拓扑架构

反馈链路处理信号带宽远高于接收链路,而性能要求则较接收链路低。为了满足带内平坦度的要求,R-L-L-R的平坦度调节电路必不可少。而R-C//L-R(R-C-R)采样噪声吸收电路所表现出的低通或带通特性限制了其在超宽带(BW>100MHz)的反馈链路中的应用。使得反馈链路中同样也存在着性能和带宽的折中。但考虑到反馈链路-10dBFs输入幅度下性能恶化有限(采样噪声随输入幅度的增加而增大),缺少采样噪声吸收电路的反馈链路的性能仍然满足系统性能要求。这里以Fs=245.76MSPS采样率,中频3/4 Fs 184.32MHz,带宽200MHz,100Ohm抗混叠滤波器负载应用为例。

图7为以牺牲些许性能为代价而取得最优带内平坦度的反馈链路前端匹配电路,R-L-L-R为带内平坦度调节电路。

 

7 Non-input buffer ADC 反馈链路设计举例

结论

Non-input buffer的ADC在高中频,超宽带,高负载抗混叠滤波器应用场景下,需要对前端匹配电路的设计进行特别的考量。针对接收和反馈链路的不同特性,有选择性的引入R-L-L-R平坦度调整电路,R-L//C-R采样噪声吸收电路,以期达到性能和带内平坦度的折中。

关键字:前端匹配电路  德州仪器  超宽带 编辑:探路者 引用地址:超宽带系统中ADC 前端匹配网络设计

上一篇:稳压电荷泵和电感式DC/DC转换器的比较
下一篇:热电耦:模拟设计人员都应该熟知的组件

推荐阅读最新更新时间:2023-10-12 22:23

2022年TI杯模拟邀请赛在杭州顺利完赛
2022年8月24日,杭州 —— 近日, 2022年TI杯全国大学生电子设计竞赛模拟电子系统设计专题邀请赛(后文简称“模拟邀请赛”)在杭州落下帷幕 。本届模拟邀请赛由全国大学生电子设计竞赛组委会主办,浙江省教育厅、杭州电子科技大学承办,德州仪器(TI)协办,共吸引了来自全国20个省市赛区75所院校,109支参赛队伍,共计300余名大学生报名参加。 尽管本届模拟邀请赛受到疫情挑战短暂延期,但全国大学生电子设计竞赛组委会、模拟邀请赛分组委会和TI大学计划部秉持“学生为主”的原则积极应对,在短时间内迅速协调、组织各方,提出了灵活、创新的竞赛方案,重新选取并部署了竞赛场地,组织专家连夜调整命题,并在设备、器件等方面尽最大可能满足
[模拟电子]
2022年<font color='red'>TI</font>杯模拟邀请赛在杭州顺利完赛
大联大友尚集团推出基于TI高性能MCU的EtherCAT 接口参考解决方案
   致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于TI C2000 Delfino™TMS320F2837xD的EtherCAT接口参考解决方案。下面就随半导体设计制造小编一起来了解一下相关内容吧。 大联大友尚代理的TI最高性能的C2000 Delfino™TMS320F2837xD是一款功能强大的32位MCU,具有双CPU和双CLA,总系统吞吐量高达800 MIPS。凭借新的VCU和TMU 加速器、PWM增强功能以及16位精度ADC和更多模拟和控制外设,该微控制器可以应对最高级的控制环路挑战,例如工业驱动器和伺服电机控制、太阳能逆变器和转换器、数字电源、电力输送以及电力线通信等等。 其3
[半导体设计/制造]
德州仪器无线电源芯片简化 Qi 充电站开发
日前,德州仪器 (TI) 宣布推出支持无线充电联盟 (WPC) 1.1 规范的新一代无线电源传输电路,进一步壮大其业界领先的电源管理产品阵营。现已开始批量出货的 bq500212A 发送器与同类竞争解决方案相比,所需组件锐减三分之一。该电路可帮助设计人员加速符合 Qi 标准的无线充电板或充电站的上市进程,其可通过 USB 端口或 5V 电源适配器工作。如欲订购样片及开发套件,敬请访问:www.ti.com.cn/bq500212a-pr-cn 。 随着市场上的 Qi 充电站越来越多,Qi 标准智能手机、智能手表以及许多其它“封闭式”便携消费类电子产品的消费者将能够使其充电电池保持更长时间。Kickstarter 推出的 A
[手机便携]
<font color='red'>德州仪器</font>无线电源芯片简化 Qi 充电站开发
ATREG 今日宣布被德州仪器(TI) 聘用为顾问
2012 年 2 月 13 日华盛顿西雅图讯– ATREG 今日宣布被德州仪器(TI) 聘用为顾问,为其在日本和美国的两个生产园区的销售方面,为其提供咨询服务。经过几周以来与德州仪器(TI) (纳斯达克:TXN) 的合作,双方达成共识,由ATREG 协助出售德州仪器位于日本日出市和德州休斯顿市的生产设施。ATREG (先进技术资源集团)是一家总部位于西雅图的咨询公司,为全球从事半导体行业的公司提供咨询服务。 维护良好的日出晶圆厂位于日本九州的硅晶生产园区,配备有高质量和低运营成本的 150 毫米晶圆生产设施及先进的集组装、测试、封装为一体的300 毫米生产线。该晶圆厂采用多重模拟 CMOS (0.72-1.2 µm)
[半导体设计/制造]
电源管理IC类别与全球电源管理芯片厂商大盘点
在所有的电子设备和产品中,都不乏电源管理IC的“身影”。随着数字高速IC技术和芯片制造工艺技术的共同高速发展,高性能电源IC“助阵”的作用显得愈加重要。而日新月异的电子产品应用、环保绿色节能需求的兴起也对电源IC提出了更高的要求,催生新一代高集成度、高性能和高能效电源管理IC的需求,亦成为电源管理IC厂商永恒的使命。 电源管理半导体从所包含的器件来说,明确强调电源管理集成电路(电源管理IC,简称电源管理芯片)的位置和作用。电源管理半导体包括两部分,即电源管理集成电路和电源管理分立式半导体器件。 电源管理集成电路包括很多种类别,大致又分成电压调整和接口电路两方面。电压凋整器包含线性低压降稳压器(即LOD),以及正、负输出系列
[电源管理]
TI针对智能仪表测量推出16款全新MSP430 MCU
在欧美立法要求日益严格以及各种实施标准不断推出的背景下,公共设施公司正积极寻求符合相关标准的仪表测量解决方案,以充分满足严格的低能耗标准要求。为满足这些需求,德州仪器 (TI) 日前宣布推出 16 款针对电气仪表测量应用的最新超低功耗 MSP430 微处理器(MCU),进一步壮大了其智能仪表测量产品阵营。这些全新 MSP430F4xx 器件是高度集成型解决方案,可支持独立的模拟前端 (AFE) 需求,并可实现业界领先的高准确度,其误差不足 0.1%。 16 款全新 MSP430 仪表测量 MCU 的主要特性与优势: • 不断壮大的仪表测量产品系列新增 F471xx、Fx461x 以及 F44x 系列 MCU,可支持多种
[测试测量]
TI EMI如何通过介质干扰电路
电磁干扰 (EMI) 是我们生活的一部分。随着时间的推移,有意和无意的 EMI 辐射源的大量产生会对电路造成严重的破坏。这些辐射源的信号并非一定会污染电路,但我们的目的就是要让低噪声系统远离这些危害。我们可以设想,一名医生使用一台心电图诊断设备,想要准确地对心脏进行诊断。在知道这是一台高精密的测量设备后,我们便不会担心讨厌的噪声会出现在诊断结果中。这是一种低频测量,电子设备不会超过 1MHz。但是,如果使用的是一台 EMI 设计糟糕的 ECG 设备,而这时医生又在检查期间使用手机接电话,那么就有理由担心诊断结果了。请参见图 1。 图 1 1.5 英尺以外的发射器(f = 470 MHz, P= 0.5W)开启和关闭时
[模拟电子]
<font color='red'>TI</font> EMI如何通过介质干扰<font color='red'>电路</font>
德州仪器在 Kilby 实验室成立五周年之际推出最新创新工作室
日前,德州仪器 (TI) 为纪念 Kilby 实验室持续五年的突破性创新,宣布在达拉斯推出 Kilby 实验室创新工作室 (Innovation Studio)。在该工作室的互动演示空间里,客户、学生及大学研究人员可亲身体验各种将塑造电子产业未来的技术。 TI 模拟业务部首席技术官兼TI Kilby实验室总监Ahmad Bahai 指出:“Kilby实验室创新工作室进一步例证了TI 对推进颠覆性创新,以及对培养电子产业未来开辟者的一贯承诺。自 Kilby 实验室投入运营以来取得的重大发展令人深感振奋,而现在客户及各界人士也均能通过我们创新工作室的互动演示亲身体验这些发展。” Kilby实验室项目覆盖各个主要
[半导体设计/制造]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved