1 低压差线性稳压器的发展现状及应用领域
随着现代科技的进步,便携式电子产品正朝着高效节能、短小轻薄的方向发展。而传统的集成线性稳压器的输入/输出压差较高,这就大大限制了它在低压供电领域中的应用。LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。更新的发展使用 MOS 功率晶体管,它能够提供最低的压降电压。使用 功率MOS,通过稳压器的唯一电压压降是电源设备负载电流的 ON 电阻造成的。如果负载较小,这种方式产生的压降只有几十毫伏。
近年来问世的低压差线性稳压器,它一经问世便显示出强大的生命力,并以低功耗、高效率、低噪声、高抗扰、体积小、重量轻等显着优点,LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。针对这种情况,才有了LDO类的电源转换芯片。由PNP型驱动管和NPN型调整管构成的准低压差稳压器(QLDO,Quasi Low Dropout Linear Regulator);由导通电阻非常低的功率场效应晶体管构成的超低压差线性稳压器(VLDO,Very Low Dropout Linear Regulator)。
低压差线性稳压器特别适合采用电池供电的便携式电子产品,如笔记本电脑、手机、MP3播放器、数码相机、数码摄录像机、数字视频光盘(DVD)、可视电话、全球定位系统(GPS)、机顶盒(STB)、便携式仪表、汽车电子设备等。
图1 线性稳压器的5种拓扑结构
a)传统的NPN型稳压器 b)准低压差线性稳压器(QLDO) c)低压差线性稳压器(LDO) d)PMOS超低压差线性稳压器 e)NMOS超低压差线性稳压器
2 线性稳压器的拓扑结构
近几年来,随着半导体技术的发展,表面贴装的电感器、电容器、以及高集成度的电源控制芯片的成本不断降低,体积越来越小。由于出现了导通电阻很小的MOSFET可以输出很大功率,因而不需要外部的大功率FET。例如对于3V的输入电压,利用芯片上的NFET可以得到5V/2A的输出。其次,对于中小功率的应用,可以使用成本低小型封装。另外,如果开关频率提高到1MHz,还能够降低成本、可以使用尺寸较小的电感器和电容器。有些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。
线性稳压器的5种拓扑结构如图1所示。a图为传统的NPN型线性稳压器,其输入/输出压差超过2.5~3V,I为驱动电流(下同)。b图为准低压差线性稳压器(QLDO),其压差可减小到0.9~1.5V。c图为PNP型低压差线性稳压器(LDO),其压差仅为0.3~0.6V。d图为由P沟道MOS管构成的PMOS超低压差线性稳压器(VLDO),其压差可降至100mV左右。e图为由N沟道MOS管构成的NMOS VLDO,其压差可低至几十毫伏。
上述5种线性稳压器的压差计算公式见附表1。
3 低压差线性稳压器的主要特点
低压差线性稳压器的主要特点是可最大限度地降低调整管压降,从而大大减小了输入-输出压差,使稳压器能在输入电压略高于额定输出电压的条件下工作。例如,传统的线性稳压器7805或LM317,要求输入电压必须比输出电压高出2.5~3V才能正常工作。为获得+5V输出,就需要+8V的输入电压。与之相比,新型低压差稳压器的输入电压只需高于+5.3V,即可获得+5V输出。从电源效率上看,LM317工作在+3.3V、1A时的效率低于50%。
低压差线性稳压器与开关稳压器相比,主要有以下6个优点:①稳压性能好;②低噪声(可达几十个微伏,无开关噪声)、低纹波(电源抑制比可达60~70dB),这对于无线电和通信设备至关重要;③低静态电流(超βLDO的静态电流可低至几微安至几十微安),低功耗,当输入电压与输出电压接近时可达到很高的效率;④具有快速响应能力,能对负载及输入电压的变化做出快速反应;⑤外围电路简单(仅用两只电容器),使用方便;⑥成本低廉。
低压差线性稳压器与其他稳压器的性能比较见表2。
低压差线性稳压器的应用
低压差线性稳压器的基本应用有以下5种。
1 交流供电的低压差线性稳压器
采用交流供电的低压差线性稳压器电路如图2所示。交流输入电压首先经过电源变压器降压,再通过整流滤波器送至低压差线性稳压器(LDO),最后获得直流稳压输出。
图2 采用交流供电的低压差线性稳压器电路
2 采用电池供电的低压差线性稳压器
采用电池供电的低压差线性稳压器电路如图3所示。低压差线性稳压器在采用电池供电时更具有明显的优势。
图3 采用电池供电的低压差线性稳压器电路
3 开关电源的后置线性稳压器
开关电源的后置线性稳压器电路如图4所示。开关电源以电源效率高而着称,但其输出噪声和纹波较大。将线性稳压器接在开关稳压器后面构成的复合式稳压电源,兼有开关电源和线性稳压电源的优点,不仅电源效率很高,而且稳压性能好,输出噪声极低,可获得纯净的直流输出电压。
图4 开关电源的后置线性稳压器电路
4 多路输出式低压差线性稳压器
多路输出式低压差线性稳压器电路如图5所示,利用4个使能端(Enable 1~Enable 4)可分别控制各路稳压输出的通、断。通信系统中各子系统的模块通常是由各自的稳压器供电的,即使它们采用相同的电源电压。
图5 多路输出式低压差线性稳压器电路
5 低压差线性稳压器在微处理器电源系统中的应用
LP2951是SIipex公司推出的低压差线性稳压器系列产品,其最高输入电压为30V,最大输出电流为100mA。固定输出式的输出电压有 3种规格:+5.0V、+3.0V和+3.3V。它具有静态电流小(仅为75μA)、输出电压精度高(±0.5%)、电压调整率及负载调整率高(可达±0.05%),低压差(满载输出时的压降为380mV)、低温度系数(20×10-6/℃)等优点。
图6 由两片LP2951CN构成的微处理器电源检测及辅助输出电路
由两片LP2951CN(IC1、IC2)构成的微处理器电源检测及辅助输出电路如图6所示。LP2951CN的输出电压为 +5V。IC1为主电源,UO1为主输出,给μP供电。IC2为辅助电源,UO2为辅助输出,可作为存储器的备用电源并给镍镉蓄电池(NiCad)充电。LP2951CN的SNS(SNSES)为检测端,UOT接内部取样电阻分压器的抽头,FB为反馈端。
低压差线性稳压器使用注意事项
● 使用低压差线性稳压器时不得超过芯片的最高输入电压(UIM)、最大功耗(PDM)、最高结温(TjM)等极限参数值。最大功耗PDM=(UIM-UO)IOM。一般讲,芯片的封装尺寸越小,功耗越低。
● 输入电压必须大于预期的输出电压与输入-输出压差之和,即UI>UO+ΔU,否则低压差线性稳压器无法正常工作。
● 为延长电池使用寿命,应选择相对于负载电流而言,静态电流IQ较小的LDO。例如,为使IQ只增加0.02%的电池消耗,在100mA负载电流的情况下,采用IQ=200μA的VLDO比较合理。某些器件是在室温条件下规定的,或只提供IQ与温度关系的典型曲线。必要时可实测IQ值。
● 输出电压的精度亦称允许偏差。线性稳压器的输出电压精度一般不超过额定值的±5%。对大多数应用而言,该精度已经足够了。
● 由于输出电容是用来补偿LDO的,因此在选择输出电容器时应格外仔细。一般情况下,采用等效串联电阻(ESR)较低的大电容器,可提高电源抑制比,降低噪声电压并改善瞬态响应。但ESR过高或过低,也可能造成振荡。
● 手机、MP3、游戏机及多媒体PDA等便携式设备,适配300~500mA的LDO。为获得良好的音频质量,这种LDO在20Hz~20kHz的音频范围内应具有噪声电压低、电源抑制比(PSRR)很高的特性。
● 为满足精密电子设备的供电要求,应尽量减小LDO的输出噪声。LDO的输出噪声主要来源于基准电压电路,它所产生的噪声经过放大后送至输出端。影响LDO输出噪声的其他因素还有LDO内部放大器的极点、零点和输出极点,外部输出电容的容量、输出电容的等效串联电阻(ESR)及负载值。
● 在查阅LDO的产品资料时,应注意所给出精度指标是在室温下,还是在整个工作温度范围内,是满载条件下还是在中等负载或空载条件下。
● LDO有多种压差数据,应区分轻载、中等负载、满载条件下的压差最小值、典型值和最大值。满载条件下压差的最大值最具有实际意义,设计时应以此为依据,确保低压差线性稳压器在最坏的情况下仍能正常工作。
● 使用LDO时,需要装合适的散热器,以便将芯片内部产生的热量及时散发出去,避免因散热不良二导致管芯温度超过最高结温,使LDO无法正常工作,甚至损坏芯片。
● 由LDO构成PC主板电源时必须具有良好的瞬态响应,以利于推动高速变化的负载,确保输出电压保持稳定。
● 利用低压差线性稳压器专用设计软件(例如美国Micrel半导体公司开发的免费设计软件LDO-It),可实现LDO的优化设计。
上一篇:线性高电压稳压器的制作
下一篇:一种低电压大电流的线性的设计和实现
推荐阅读最新更新时间:2023-10-12 22:24
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC