DSP 在电源设计中的应用

最新更新时间:2013-08-17来源: 21ic关键字:DSP  电源设计 手机看文章 扫描二维码
随时随地手机看文章

电源的信号测控部分由DDS信号发生和信号测量组成。DDS 在电源设计中的应用早已存在。在早期的DDS 设计中,硬件组成由计数器、触发器等多种多个分立逻辑元件组成; 而在出现可编程逻辑器件CPLD、FPGA 后,DDS 的硬件构成简化了许多。电源的信号测量,分为频率、幅值及相位的测量。频率的测量采用脉冲填充法; 幅值测量则随着A/D 转换器的采样速度及处理器速度的提高,由原来的有较大延迟的真有效值转换发展为周期实时采样计算;相位测量则在幅值测量的基础上,由原来的间相脉冲填充法发展为乘法器矢量测量。

DSP 的高速处理能力,使其可以实现DDS 中的CPLD 或FPGA 及测量电路中的模拟数字混合乘法器的功能,从而使电源的信号发生及测量的硬件设计更简单。

1 设计方案

方案设计如图1 所示。DSP 以等时间间隔快速、连续读取扩展程序存储器中的波形数据,送入并行高速D/A,并行高速D/A 即可输出预设信号波形。

 

 

输出信号幅值的调整不如波形数据读取操作那么频繁,且对操作完成时间的长短、精度要求也不如波形数据读取高,所以选择串行多通道D/A.这样既可以降低成本,又可以简化部分硬件设计。以N 个波形读取时间间隔为计时基础,DSP 通过并行高速A/D 对经信号处理后的被测信号进行连续采样,通过计算,可得出被测信号有效值及相位。

2 DDS 的DSP 实现

2.1 DDS 原理

DDS 是利用相位累加原理直接合成所需波形的一种频率合成技术,典型的DDS 模型由W 位相位累加器、移相加法器、波形存储器ROM 查找表( LUT) 、D/A 转换器( DAC) 以及低通滤波器( LPF) 构成。其中相位累加器由W 位加法器与W 位累加寄存器级联构成。

DDS 工作时,每来一个时钟脉冲p,加法器将相位步进值Δθ 与累加寄存器输出的累加相位数据相加,把相加后的结果送至累加寄存器的数据输入端。

累加寄存器将加法器在上一个时钟脉冲作用后所产生的新相位数据反馈到加法器的输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。相位累加器输出的数据作为查表地址,从波形存储器( ROM) 中提取对应的波形抽样值( 二进制编码) ,送入D/A 转换器C 中。在相位累加器的数据输出范围0 ~ 2W – 1,与波形存储器中一个完整周期波形的地址,按照特定的函数关系对应起来的前提下,相位累加器的每次溢出,DDS 就相应的输出了一个周期的波形。因此,相位累加器的溢出频率就是DDS 输出的信号频率。由此可推导出DDS 输出的信号频率公式:fout = fclk × Δθ /2W

式中fout为DDS 输出频率; fclk为标准时钟脉冲,固定值; Δθ 为相位步进值,无符号整数,无单位; W 为相位累加器宽度。

从公式( 1) 可以看出,在相位累加器宽度W 为定值、相位步进值Δθ 为1 时,可得出DDS 的最小输出频率,即DDS 的频率分辨率fr.因此,只需要调整相位步进值Δθ,就可以使DDS 的频率以fr的整数倍输出。

2. 2 DDS 工作模式选择

根据公式( 1) 可以看出,在相位累加器宽度W 为定值的前提下,DDS 的输出频率,取决于Δθ 和fclk.

Δθ 取值为DDS 的相位分辨率时,DDS 输出信号的每个周期由固定点数组成,此时fout与fclk成比例关系,DDS 为调频模式; fclk为定值时,DDS 输出信号在单位时间内由固定点数组成,此时fout与Δθ 成比例关系,DDS 为调相模式。

调频模式,其关键点为采用锁相环技术对预置输出频率进行倍频[3 - 4].与调相模式相比,调频模式不仅要多出锁相环及相应倍频逻辑电路的设计,且在进行频率调整时,信号会有短时间的失锁,造成输出信号的振荡。因此,调相模式是本设计中DDS 的最佳选择。

2. 3 DSP 实现DDS 的优势

无论是用分立逻辑器件还是CPLD 或FPGA 设计DDS,其目的都是为了将相位累加器的累加、输出、波形数据查表等这些运算处理通过硬件电路高速实现。唯一的区别就是应用CPLD 或FPGA 设计DDS,可以将诸多分立器件实现的逻辑电路,通过VHDL 等编程语言编程固化在单一芯片上,从而达到简化硬件电路设计目的。而采用DSP 设计DDS,则完全可以利用其高速运算能力,通过软件编程来完成相位累加器的累加、输出、波形数据查表等运算。因此,相比于采用CPLD 或FPGA,采用DSP设计DDS 更灵活高效。

2. 4 基于DSP 的DDS 的参数设计

2. 4. 1 标准时钟脉冲fclk

的设计从公式( 1) 可以看出,在相位累加器宽度W 为定值、相位步进值Δθ 为1 时,可得出DDS 的最小输出频率,即DDS 的频率分辨率fr.因此,只需要调整相位步进值Δθ,就可以使DDS 的频率以fr的整数倍输出。

P = 2W ÷ Δθ

式中P 为DDS 输出信号的每个周期的组成点数。

将式( 2) 代入式( 1) ,可得:

fclk = fout × P

在P 足够多且每点波形数据分辨率与P 匹配的前提下,即可忽略DDS 信号输出的高频谐波含量,从而省略硬件设计中的滤波器环节,避免了由滤波器产生的相位偏移。当P = 10000 时,完全可以满足要求。如设计最大输出频率65Hz,可得fclk = 0. 65MHz.

fclk可利用DSP 计数器的中断产生。考虑到DSP 的工作频率均为MHz 的整数倍,所以fclk取值1MHz,更加便于中断的准确产生。

2. 4. 2 相位累加器宽度W 的选取

P = 10000 时,W 取值27 即可满足设计频率调节细度≤0. 01Hz 的要求。但相位累加值θ 在DSP 中定义为4 字节的操作数,W 取值27 时,DSP 需对相位累加值进行上限判断处理后再提取波形数据,从而产生细小的波形畸变并增加一定的运算量。考虑到可利用操作数的自然溢出来减少DSP 的判断及运算操作,所以W 取值32.

2. 4. 3 周期波形点数P 的选取

在不考虑四舍五入取值的前提下,相位累加器的输出值与波形数据表数组下标的函数关系如下:

A = P × θ ÷ 2W

式中A 为波形数据数组下标; P 为波形数据点数; θ为相位累加器输出值。

由于DSP 中没有现成的除法指令,除法是靠被除数与除数之间的移位相减来实现的,采用该函数的算法将增加DSP 的运算量。因此,可以通过事先将P ÷ 2W 作为系数,减少求数组下标运算步骤。但P ÷ 2W 可能为小数,如果取整计算,将使下标出现跳跃性变化,导致输出波形畸变增大。不取整计算时,如使用定点DSP,虽然价格便宜且运算速度较快,但会增加系统运算量。而使用浮点DSP,运算速度较慢且硬件费用会有相对提高。考虑到DSP 要进行多线程的任务工作,需要较快的运算速度,因此选用定点DSP,并对波形数据数组下标的算法进行进一步的改进。

将公式( 4) 中P 的点数由相位调节细度要求的最低点数Pmin调整至大于Pmin的最小的2 的X 次幂。

将P 代入公式( 4) ,简化得:

A = θ /2W-X

在DSP 中,所有的值都用二进制来表示。所以,在公式( 5) 里所有变量的取值均为无符号整数的前提下,A 的获得就简化成了对θ 进行( W – X) 次的右移。

从而大大降低DSP 的运算量。以相位分辨率≤0. 03°为例,P 取值16384 =214,A 的表达式即简化为θ /218.

3 信号测量

信号需要测量频率、有效值、相位三个参量。信号处理电路采用传统的互感器采样加低通滤波。电压信号处理电路比电流信号处理电路,多设置一过零比较的波形变换功能单元,其作用是将电压被测信号由正弦波变换为方波,为信号测量提供周期信号。

3. 1 频率测量

频率测量相对简单,采用传统的脉冲填充法,即DSP 利用周期方波作为中断信号,用DSP 的计数脉冲的频率除以中断间隔内计数器的计数脉冲数,就可获得输出信号的频率。

3. 2 有效值测量

有效值测量即对被测信号进行区域内积分后取平均值。通过RC 电路实现硬件积分,响应速度慢,且增加相应的硬件开销。而利用DSP 的高速计算能力,通过相应计算即可得出有效值,可提高相应速度,节省硬件开销。

正弦波有效值的计算公式:

 

 

式中Vm为有效值; T 为采样周期; Um为被测正弦波峰值;ω 为被测正弦波角频率; φ 为被测正弦波初始相位。

积分的计算过程,等价于在积分区间内对被测信号进行足够多的、等间隔采样,并进行累加求和计算。因此,公式( 6) 可变换为:

 

 

式中N 为测量周期内的采样次数; Un为采样值。

为保证测量值的准确,被测信号每个周期内的采样次数应≥100.因此,在以标准时钟脉冲fclk( 1MHz) 为计时基准、被测信号最高频率65Hz 时,每次采样间隔应≤153 个标准时钟脉冲。

3. 3 相位测量

相位的测量,借鉴了模拟数字混合乘法器进行矢量测量的原理。模拟数字混合乘法器进行矢量测量的原理如下:

对于正弦信号,矢量测量就是测量相对于标准正弦信号的相位和幅值。如图2 所示,设被测信号V( t) = U( t) sin( ωt + φ) ,两片Rom 中分别存有正弦和余弦函数表,锁相环实现数字sin^( ωt) ,cos^( ωt) 与V( t) 同频同步。模拟信号V( t) 输入到乘法型D/A 的参考电压端,与数字量sin^( ωt) ,cos^( ωt) 在D/A 转换器实现模拟数字混合乘法运算,低通滤波器完成积分求平均值运算,低通滤波输出的是直流信号。

 

 

 

 

被测信号的幅值和相角分别为:

 

 

综上所述,模拟数字混合乘法器矢量测量的原理可简述为,将被测信号幅值与标准正弦、余弦分别相乘并计算其有效值,然后通过对两有效值进行反正切运算即可获得被测信号与标准信号的相位差。

从公式( 8) 、( 9) 可以看出,被测信号的采样值,在相位测量中可被重复利用。因此相位测量也可以采用与有效值测量相同的时钟脉冲及采样间隔。从图2 中可以看出,被测信号与标准正弦D/A、余弦D/A 的相乘,其实质是被测信号采样值与标准正弦、余弦查表值相乘。由于相位测量的采样以标准时钟脉冲fclk为计时基准,每次采样前必有一个刚被查表取出的电压正弦波数据值被送至D/A 输出,该数据值对应相位累加器输出值θ .根据正弦与余弦的函数关系式cosa =sin( a + 90°) ,将θ 偏移2W-2 ( 此操作等价于移相90°后查表获得余弦数据值。因此,模拟数字混合乘法器矢量测量相位,完全可以通过DDS 的查表功能与有效值测量功能相结合,利用软件来实现。

4 结束语

通过对DDS 和模拟数字混合乘法器矢量测量原理的分析,提出了以DSP 嵌入式系统为硬件基础,利用软件编程实现DDS 相位逻辑运算、积分运算、矢量的模拟数字混合乘法的设计思路。采用该设计思路进行电源,可大大简化硬件设计,节省硬件成本,缩短开发时间。

关键字:DSP  电源设计 编辑:探路者 引用地址:DSP 在电源设计中的应用

上一篇:通过改进数字电源提升云端设备节能效率
下一篇:数字电源浅析

推荐阅读最新更新时间:2023-10-12 22:24

电源设计小贴士:注意 SEPIC 耦合电感回路电流-第 1 部分
在这篇《 电源设计小贴士 》中,我们将确定 SEPIC 拓扑中耦合电感的一些漏电感要求。在不要求主级电路和次级电路之间电气隔离且输入电压高于或者低于输出电压时,SEPIC 是一种非常有用的拓扑。在要求短路电路保护时,我们可以使用它来代替升压转换器。SEPIC 转换器的特点是单开关工作和连续输入电流,从而带来较低的电磁干扰 (EMI)。这种拓扑(如 图  1  所示)可使用两个单独的电感(或者由于电感的电压波形类似),因此还可以使用一个耦合电感,如图所示。因其体积和成本均小于两个单独的电感,耦合电感颇具吸引力。其存在的缺点是标准电感并非总是针对全部可能的应用进行优化。       图  1 SEPIC  转换器使用一个开关来升降
[电源管理]
<font color='red'>电源设计</font>小贴士:注意 SEPIC 耦合电感回路电流-第 1 部分
基于PIC单片机的可编程电源设计
引言 随着各种电器和仪表设备的日渐丰富,对电源应用的灵活性提出了更高的要求。设计一款使用灵活、方便且价格相对便宜的通用电源,正越来越成为市场所需。现代单片机正朝着处理速度越来越快,外设资源越来越丰富,价格越来越便宜的方向发展,将单片机融入电源的设计中可以极大地提升电源的性能和灵活性。本文介绍了一种单片机加PWM芯片的开关电源设计方法,既可以保留PWM芯片带来的稳定工作性能,又可以利用单片机的控制能力提供各种人机交互和通信接口。笔者设计的电源作为通用电源使用,可以提供灵活可编程的电压电流输出,另外还可以设置成铅酸电池充电器的模式,具有广阔的应用前景。 1 系统功能 通过对电源的编程,可以方便地实现图1所示的电压输出
[单片机]
基于PIC单片机的可编程<font color='red'>电源设计</font>
基于DSP的核信号采集系统通讯接口原理及设计
 数字信号处理器的发展也是日新月异,不仅行指令速度越来越快,而且其功耗也越来越低。许多仪器或检测设备都不约而同地将DSP 应用到那些数据量庞大而且需实时传送数据的系统中。核信号数据采集系统也不例外,利用 DSP 可以实时有效地处理采集的信号,并将处理数据发送至上位机进行进一步处理。 通常 数据采集系统下位机与上位机的通讯采用串口方式,这种方式不仅协议简单,而且连接方便。 但是这种方式的数据传送速率不高,而USB 总线接口具有方便快捷、支持即插即用、可实 现高速数据通讯等优点,在很多领域得到广泛应用。USB 总线接口在USB1.1 协议下传输速 率可达12Mbps ,USB2.0 协议下可达480Mbps ,完全可以
[嵌入式]
基于<font color='red'>DSP</font>的核信号采集系统通讯接口原理及设计
基于TS201的多DSP系统设计与实现
   0 引言   随着软件无线电技术的发展,以及大宽带高分辨率多路信号和多种信号处理方式的采用,信号处理中的运算量与数据吞吐量急剧上升,于是,越来越多的系统采取多DSP的并行处理方式来满足实时处理的性能要求。并行处理系统通常由多个处理单元组成,并通过一定的方法将一个任务分成若干个子任务,再分别由各处理单元去完成。一个合适的系统结构往往可以大大提高系统的运行效率,简化软件的实现,并且方便软硬件的更新和维护。    1 ADSP-TS201简介   ADSP-TS201是美国模拟器件(ADI)公司继TS101之后推出的一款高性能处理器,可广泛应用于大存储量、高性能、高速度的信号处理和图象处理系统中。TS201本身提
[嵌入式]
DSP编程技巧之4---揭开编译器神秘面纱之高级程序优化
  在上次的文章里 ,我们提到了 DSP 编程中程序优化最常使用到的选项问题,主要提到的几个选项包括-O1、-O2、-O3、-O4等等。虽然我们是以 DSP 为例进行说明的,但是对于其它的处理器,例如 ARM 、CPU、一些高级的单片机如MSP430、PIC等等和一些编译环境,例如Keil、Xilinx SDK等,它们使用的一般的优化选项和基本内容也是大同小异的,即同样的优化级别,优化的目的都是基本一致的。   这些都是基本的操作,如果我们的目的仅仅是优化代码性能或者尺寸的话。如果我们想了解优化过程中产生和使用的更多信息的话,对于 DSP 本身而言,它的一些其它特性对于程序的运行性能也是非常关键的,此时在基本的优化选
[嵌入式]
<font color='red'>DSP</font>编程技巧之4---揭开编译器神秘面纱之高级程序优化
基于DSP的USB口数据采集分析系统设计
  随着DSP芯片功能越来越强,速度越来越快,性价比的不断提高以及开发工具的日趋完善,广泛用于通信、雷达、声纳、遥感、生物医学、机器人、控制、精密机械、语音和图像处理等领域。作为计算机接口之一的USB(Universal Serial Bus)口具有势插拔、速度快(包括低、中、高模式)和外设容量大(理论上可挂接127个设备)的特性,使其成为PC机的外围设备扩展中应用日益广泛的接口标准。本文设计并实现了基于DSP的USB口数据采集分析系统,该系统的DSP负责数据的采集和运算处理,处理结果通过USB口送计算机显示分析,其结构如图1所示。   该结构图中,CPLD和FPGA实现模块接口,包括串并转换、8位和32位数据总线间
[嵌入式]
DSPDSP功能的ARM
  最近在工控领域里的一个项目,看到前期的工程设计人员设计了 Cortex-M3 微处理器 与TI DSP 的搭档来完成整个项目。“为什么不使用 Cortex-M4 的内核?”这个疑问就立刻蹦了出来。今天仔细查询了一下,做个简单的对比,供广大的网友们参考。   上面只是简单提到了几点。3倍于 DSP 的主频频率使得 STM32F407 在一定程序上弥补了在处理浮点运算的不足,而较便宜的价格,不仅使得项目的总成本大幅节省,也便得有 ARM 开发基础的工程师们更容易操控 DSP 的算法。   毕竟是工业控制领域的应用, Cortex-M4 还能充分发挥其过程控制的优势,丰富的IO引脚及兼容的5v TTL电平与外围器件的连接简
[嵌入式]
<font color='red'>DSP</font>与<font color='red'>DSP</font>功能的ARM
基于S3C44B0X的嵌入式Socket通信设计
随着微电子技术的不断创新和发展,嵌入式系统已经广泛渗透到科学研究、工程设计、国防军事、自动化控制领域以及人们日常生活的方方面面。由嵌入式微控制器组成的系统其最明显的优势就是可以嵌入到任何微型或小型仪器和设备中。 嵌入式系统是指将应用程序、操作系统与计算机硬件集成在一起的系统。它以应用为中心、以计算机技术为基础,而且软硬件可以裁剪,因而是能满足应用系统对功能、可靠性、成本、体积和功耗的严格要求的专用计算机系统1。嵌入式系统与通信、网络技术的结合可以极大地增强网络的智能化与灵活性,拓展通信功能,从而实现各种通信系统之间的互联互通。本文给出一种适合于中/低端应用的通信平台设计方案,它可支持Ethernet网络之间的数据传输,并且具有R
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved