整流器模拟负载系统设计方案

最新更新时间:2013-10-13来源: OFweek电子工程网关键字:整流器  模拟负载  系统设计 手机看文章 扫描二维码
随时随地手机看文章

  前言

  通常,直流电源出厂前都需要进行老化试验及电源输出特性试验,国外发达国家一般都采用电子模拟负载系统进行类似的试验,将试验过程的能量回馈电网。由于这样的系统一般都比较昂贵,因此我国只有极少数电源生产厂商在出厂考核时使用电子模拟功率负载。

  对于有些场合,电源的放电也可以采用由晶闸管组成的有源逆变电路来实现,但因其功率因数差,谐波含量高,不能满足相关的国际及国家的谐波标准,因而不适合大功率的应用场合。

  为解决这一问题我们曾经研制了利用电压型PWM整流器实现的电子模拟功率负载,它是一种利用电力电子技术、计算机控制技术及电力系统自动化技术设计实现,用于对各种直流电源进行考核试验的实验装置。尽管由电压型PWM整流器实现的电子模拟负载系统能进行恒压输出的电源系统试验,然而对于输出电压在一定范围内变化的直流电源及蓄电池电源(端电压在放电过程中逐渐下降),因为电压型PWM整流器的直流侧至交流侧具有降压的特性,所以很难设计利用电压型PWM整流器实现的电子模拟功率负载,以满足在被试电源输出电压较低时或蓄电池因放电而输出电压降低时整个范围的要求。

  针对上述分析,通过对电压型及电流型PWM整流器特性的比较,提出了一种利用电流型PWM整流器直、交流变换的升压特性实现的电子模拟功率负载系统。该系统除了具有电压型PWM整流器功率因数高、输出连续可调的优点外,还能满足输出电压变化的电源的试验要求,且具有可靠性高等优点。

  方案选择

  电压型PWM整流器与电流型PWM整流器的特点比较

  尽管电压型PWM整流器与电流型PWM整流器均能实现交流至直流及直流至交流的能量变换,但因其电路结构不同而各有其特点。从滤波结构上看,二者具有对偶特性,如表1所示。

表1 电压型PWM整流器与电流型PWM整流器的特性

  采用电流型PWM整流器的原因

  对于输出电压恒定的被试电源,采用电压型PWM整流器能够很好的满足试验系统的要求,然而对于被试电源输出电压不恒定的情况,由于电压型PWM整流器的直流侧电压要大于等于其交流侧电压的峰值,从很好的满足试验要求的角度出发,很难实现对整流器的设计,如被试直流电源的电压变化范围为20%~100%的额定电压,则若按20%额定电压时设计交流额定电压的等级,则在100%的额定电压工作时会使得交流电流很大;若按100%额定电压设计,则在直流电压较低时逆变上网的电流会随直流电压的降低出现越来越严重的畸变现象。对于蓄电池的测试,因其在放电时输出电压会下降,所以与输出电压变化的电源具有同样的性质。由上述分析可以看出在这种情况下利用电流型PWM整流器实现电子模拟负载,可以方便的实现实验电能的回馈电网。

  基本原理

  电子负载模拟原理

  电子模拟负载应用系统原理如图1所示,被试电源从工业电网取得交流电能,其输出为直流,该直流作为模拟负载系统的输入。图1中的“负载模拟单元”即本文所述系统的核心部分,主要由电流型PWM整流器及滤波元件实现,用以取代传统的电阻能耗型负载。它的逆变能量经隔离变压器Tr后被实验系统循环使用,以此达到节约能源的目的。能量流动方向如图1所示。

图1 电子模拟负载系统原理

  若设被试电源VDC从电网吸收的电能容量为100kW,效率为95%;负载模拟单元SL的效率为95%,变压器的效率为98%,则被试电源吸收功率:P1=100kW;被试电源输出:P2=100kW×95%=95kW;模拟负载输出:P3=95kW×95%=90.25kW.变压器输出:P4=90.25kW×98%=88.5kW.由此可见实验系统的总耗能为P0=P1-P4=11.5kW.即要完成100kW的功率试验,其能源功率消耗仅为11.5kW,这大大降低了实验系统对供电的要求。

  对于蓄电池放电实验,与上述系统不同的是其所释放出的电能完全被电网所吸收,以供其他用电用户使用,此时的工况相当于电力系统中发电机的并网运行。

  由上述分析可知,若要实现对阻性负载的模拟,同时将电能反馈电网,只要利用图2所示的PWM整流器进行逆变控制使其电能从直流侧向交流侧流动即可。  电流型PWM整流器控制

  电流型PWM整流器原理图如图2所示。

图2 PWM整流器原理图

  图2中VT1~VT6:主开关管IGBT;C:交流侧储能滤波电容;LA、LB、LC:PWM整流器至电网之间的滤波电感,为使得PWM整流器逆变到电网的电流谐波符合IEC1000-3-2标准而设置,它的引入可减少滤波储能电容的值;Ld:直流侧滤波电感,主要作用是存储电能变换过程中的无功能量;LEM:直流侧电压检测。

  图3为PWM整流器A相的等效电路,图中us,IP分别为电网电压矢量和电流型逆变器输出的A相电流基波的矢量,RS为线路电阻,Cs为储能滤波电容。

图3 PWM整流器A相的等效电路

  逆变工况的基波矢量图如图4所示。

图4 逆变工况的基波矢量图

  Cs为PWM整流器的交流侧储能滤波电容,它的取值大小至关重要。取值较大有利于电能转换及反馈电流的滤波,但成本增加且电容上的电流增加,电容上的电流增加则直接影响PWM整流器向电网逆变的功率,或同等功率下不得不增大PWM整流器主开关管的电流容量,从而使得整体成本增加;取值较小,电容上的电流减小价格降低,但反馈电流的谐波增加。因此对于Cs的取值应综合考虑电容上的电流、电流的谐波和制造成本。

  为使得Cs在合理的情况下PWM整流器的逆变输出电流满足IEC1000-3-2所规定的最大谐波电流值,在PWM整流器的交流输出端合理地设置滤波电感,如图2所示的LA、LB、LC可获得较为理想的效果,该电感的并入能较好的抑制流向电网的高次谐波电流,且该电感的数值较小并不能改变电路系统的特性。

  若设图2中的开关VTK导通时=1开关VTK关断时=0则根据电流型逆变器的工作特点必定有如下关系

  考虑到电流型PWM整流器直流侧具有相对较大的电感,因此有理由假定在一个开关周期内直流电流是保持恒定的,则图2所示的相关电流有如下关系

  上式中I为PWM整流器直流侧电流,考虑到输出波形的频率与逆变器开关频率相比要低得多,因而有理由用一个开关周期内的平均值dk替代开关函数,因此逆变器交流侧电流可表示为

  图2所示电路的电流型PWM整流器总计能产生六个空间矢量和三个零矢量,其表达式如下

  因此只要采取适当的控制策略就可以获得所要求的Ira、Irb、Irc.

  系统参数选择及实验结果

  每个负载模拟单元参数,直流电压:54~540V;直流电流:30~100A.

  参数选择

  系统主电路见图2,VT1~VT6:主开关管IGBT,电流额定为200A;LA、LB、LC:PWM整流器的滤波电感,4mH;L:直流侧滤波电感,5.3mH;C:交流侧储能滤波电容,5μF/1200V;LEM:直流侧电压检测,型号为:KV50A/P;逆变器调制频率:10kHz,直流侧电压:54~540V.  实验结果

  图5的超前电压为电容上的电压,滞后者则为电网电压波形,从图2所示的原理图可以看出此时的工况为再生工况,且滤波电感LA、LB、LC起到滤波作用,进而可以看出尽管电容上的电压波形含有一定量的高频成分,但经滤波后的馈网电流的谐波已足够小了(见图6所示的电流波形)。

图5  电网电压波形和电容上的电压波形

图6  PWM整流器交流侧输出电流及电网电压波形

  PWM整流器交流侧电压及输出电流波形如图6所示。

  从图6所示的电网电压波形及PWM整流器输出电流波形可以看出二者是反相位的,即该控制方法使得交流侧的功率因数约为-1.0.

  利用波形分析仪对反馈电流进行的谐波分析得知,由电流型PWM整流器实现的电子模拟功率负载在额定功率运行时的总谐波小于1.2%,在50%功率运行时的总谐波含量小于1.3%,在10%功率运行时的总谐波含量小于1.6%,满足我国的有关谐波标准及国际IEC1000-3-2标准。

  实验证明该方法具有控制精确、电流动态效应快、DSP控制器计算量小、易于实现对逆变器的高频控制等优点。

  结论

  本文的原理分析及实验证明,采用电流型PWM整流器实现电子模拟功率负载,一方面为实现电子模拟功率负载提供了又一可选方案,另一方面,为输出电压变化的电源所需电子负载提供了更为有效的解决方法。该方案通过对电能的再生利用解决了利用电阻型负载进行实验时的能源浪费问题,改善了工作环境,节约了工作空间,实验的自动化程度也有很大的提高。

  本文的讨论是对输出电压变化的直流电源及蓄电池的出厂试验、特性实验,日常维护检测及可靠性试验而言的,对输出电压恒定的直流电源同样适用,只是它们的电流和电压的等级不同使得在设计上有所不同。

关键字:整流器  模拟负载  系统设计 编辑:探路者 引用地址:整流器模拟负载系统设计方案

上一篇:PCB设计中的阻抗匹配与0欧电阻
下一篇:基于集成直流稳压电源的设计

推荐阅读最新更新时间:2023-10-12 22:28

基于C8051F040的压力机控制系统设计
   1 引言   压(拉)力机是用于检测建材及某种产品强度的机械。它根据工作方式分为压和拉两种,其工作力均由油泵产生,因此统称压力机。压力系统由机械结构和控制柜组成,工作时先安装试件,人工手动按下开始按钮,观察压力值,根据不同材料相应调节加压速度,使其到达额定压力,进而进入保压期,由于同时还需记录数据,因此要求熟练人员操作。   为了减轻操作人员的工作强度,提高实验精度,这里给出一种智能压力机控制系统设计方案。该系统工作时操作人员用鼠标选择材料,并按下开始试验按钮,计算机则按照预定方案自动操作,操作完成后可打印出试验曲线和结论报表。    2 控制器硬件组成   该系统在原压力机的基础上增加控制器和计算机
[单片机]
基于单片机的自动量程切换电压测量系统设计
  在电子系统设计调试过程中,电压测量往往是一个测控或测量系统中不可缺的项目。对于电压测量,若其在一个小动态范围内变化,则无论电平高低,要做到精确测量并不困难。但当被测量在宽动态范围内变化时,例如从mV级甚至μV级到V级,做到测量误差均匀的控制在一定范围之内,常用的方式是切换量程,即指定测量范围,例如常用的数字电压表等仪器。然而在许多情况下为了保证测量的实时性,测量时不可能变换测量通道的量程,因此要在整个电压变化范围内做到精确测量就凸显出其重要性。本文基于MCU AT89C51控制,实现了一种自动量程切换的电压测试系统。   1 电压测量原理及系统组成   为了对不同量级的电压信号进行测量,对输入信号进行放大时就不能采
[模拟电子]
基于MC9S08SH4和AD7705的智能传感器系统设计
近年来随着传感器技术和信息处理技术的快速发展,工程应用中对传感器的测量精度、数据传输距离和信息处理能力都提出了更高的要求。为了克服普通力敏、光敏传感器抗干扰能力差、传输距离短、调零难、测量节点无法直接与上位机通信等缺点,本文设计了一种以Freescale MC9S08SH4单片机 和AD7705为核心构成的智能传感器系统,在普通传感器上增加了软件调零、浮点数据处理、自动补偿、与上位机双向通讯、标准化数字输出等功能,可以很方便地实现上位机对数据的实时采集和处理,并具有测量精度高、结构紧凑、抗干扰能力强等特点。 1 系统组成   智能传感器系统由信号调理电路、A/D转换电路、主控电路、调零电路、RS-485通信电路和电源电路等模块组成。
[工业控制]
基于MC9S08SH4和AD7705的智能传感器<font color='red'>系统设计</font>
以太网标准与驱动系统设计
  因为多种原因,工业以太网已成为工厂自动化的主流技术。而没有引起同样重视的是,需要在供应商系统中实现这一通信技术。本文从工厂自动化供应商开发从机系统的角度出发,介绍实现工业以太网的各种选择,例如I/O模块和驱动等从机系统。   这些OEM面临的难题可以从查看机系统体系结构开始。供应商并非针对某一协议来设计从机系统,而必须支持可以在工厂中实现的任何标准,不能指定某一种协议,因此系统必须适应任何一种协议。   开发的从机协议新标准也有独特的硬件特性,它们不能使用标准MAC实现。这些都直接影响对实现平台的选择。   以太网简介   一开始,以太网——10 Mbps最初的以太网、100 Mbps的快速以太网,以及1 Gbps的千兆以太网
[嵌入式]
基于LPC2104的爬壁机器人控制系统设计
引言 近年来,随着微机电系统(MEMS)技术的发展和微小型移动机器人应用领域的不断拓展,出现了这样一种需求,即用微型爬壁机器人代替人工进行各种极限作业,如公安消防中使用微型爬壁机器人进行纵横交织;上下连通的大楼通风管道进行灾情现场考察;敌情侦察;或进入空间狭窄的核工业管道群之间进行外管壁的检测和维修等。微型摒弃壁机器人具有广泛的应用前景,在国家自动科学基金和上海市启明星的联合资助下,笔者开发了基于并联腿机构的四足微型爬壁机器人。 1 机构简介 本文所设计的微型爬壁机器人(长10cm,宽4cm,高4cm)采用四足对称结构,随机构采用并联机构(也称并行三连杆机构),吸附装置采用仿生高分子粘性材料经切削加工制成的贴性吸盘。每
[单片机]
基于MSP430单片机的步进电机控制系统设计
    单片机实现的步进电机控制系统具有成本低、使用灵活的特点,广泛应用于数控机床、机器人,定量进给、工业自动控制以及各种可控的有定位要求的机械工具等应用领域。步进电机是数字控制电机,将脉冲信号转换成角位移,电机的转速、停止的位置取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,非超载状态下,根据上述线性关系,再加上步进电机只有周期性误差而无累积误差,因此步进电机适用于单片机控制。步进电机通过输入脉冲信号进行控制,即电机的总转动角度由输入脉冲总数决定,而电机的转速由脉冲信号频率决定。步进电机的驱动电路是根据单片机产生的控制信号进行工作。因此,单片机通过向步进电机驱动电路发送控制信号就能实现对步进电机的控制。 1 系统设计原理
[单片机]
基于S12的无线传感器网络样机系统设计
   引言   微传感器技术的发展和广泛应用,使得无线传感器网络成为传感器网络发展的必然趋势。无线传感器网络是由大量无处不在的、具有通信与计算能力的微小传感器节点,密集布设在无人值守的监控区域,构成的能够根据环境自主完成制定任务的“智能”自治测控网络系统。由于无线传感器网络长期在无人值守的状态下工作,无法经常为传感器节点更换电源,因此能耗成为无线传感器网络设计的关键问题之一,在系统设计时必须尽可能降低系统能耗。本文以无线传感器网络技术为理论依据,以教学样机系统为开发目标,提出了以MC9S12DT128为核心处理器,由蓝牙无线通信协议实现的无线传感器网络节点的设计方法。   1  硬件设计   1.1  系统原理  
[嵌入式]
基于80C52单片机的电加热数字恒温控制系统设计
电加热炉是科学实验、工农业生产过程中量常见也是最常用的加热设备,由于炉子种类与规格、加热对象的不同,它们所构成的系统千差万别。温度作为一个重要检测和控制参数,对其控制的好坏直接影响到产品的质量和数量。电加热炉种类繁多,控参数通常具有时变性、非线性、不确定性等特点,对其控制方案的研究不论在基地式仪表时代还在现在的智能化仪表时代,都是很热门的对象。在现有温度控制仪表的配置加热系统中,大多数只配有一组加热元件,当温度达到调控点时,便切断电源进行保温,随着时间的推移,温度降到一定数值后启动该组件元件的电源供电进行加热,从此周而复始,动作频繁。用作测温的传感器,当温度上升到设定点温度时,必然有一个时间的滞后性,使被控温场冲过温控点,而过冲幅
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved