一种面向信号的自动测试系统资源分配方法设计

最新更新时间:2014-01-08来源: 21IC关键字:自动测试系统  资源分配 手机看文章 扫描二维码
随时随地手机看文章

ATS(Automatic Test System,自动测试系统)能够对被测设备进行自动测试、故障诊断。传统的面向仪器的ATS 中开发的TPS(Test Program Set,测试程序集)涉及对测试资源的直接访问,当TPS在不同平台之间移植或测试仪器资源改变时,测试程序需做大量改动,可移植性和重用性较差。

ATML(Automated Test Markup Language,自动测试标记语言)采用面向信号的结构对ATS进行标准化描述。

ATML将测试需求描述为UUT端口的测量/激励信号需求,测试资源能力描述为仪器资源端口的信号能力,通过信号匹配实现仪器资源的分配。测试执行过程中,测试程序根据仪器资源分配的结果,调用面向信号的仪器驱动实现测试操作。基于ATML 开发的TPS中不包含任何针对硬件资源的操作,当TPS在不同平台之间移植时,资源分配模块能够重新为UUT 端口分配测试仪器,提高了TPS的可移植性。

1 仪器能力描述

ATML ATS关系图如图1所示。

 

 

在ATS 中,仪器的主要功能是产生或测量UUT 端口的需求信号。传统的测试仪器往往是功能单一的专用仪器,ATS中仪器数量众多,随着被测设备的增加,专用的测试适配器也越来越多,导致通用ATS的规模越来越庞大。近年来出现了以软件控制的、以功能组合方式实现的合成仪器技术,如Ai7技术,将7种仪器的功能由一个合成仪器模块来实现。本单位自主研发的可重构仪器资源的每个通道可以软件定义为AD/DA/计数器/DMM等常用的测试仪器资源,省去资源分配环节(信号开关矩阵);同时,可重构仪器具备超宽量程,可以不使用接口适配器进行信号调理。

为了实现面向信号开发的TPS的灵活重载和仪器的独立,ATML 不直接利用仪器的物理端口(Ports),而是在仪器描述文档内定义信号能力(Capabilities)和逻辑资源(Resources),通过能力到资源的映射(Capability-Map)和资源到端口的连接(NetworkList)实现不同的信号能力到仪器端口的分配。整个测试系统的能力是测试工作站中所有仪器能力的总和。

以可重构仪器中的万用表资源为例,其能力、资源和端口的映射关系如图2所示。

 

 

(1)定义仪器的信号能力

仪器的信号能力定义了仪器能够产生或测量的信号类型信息。仪器的信号能力使用STD 的BSC(BasicSignal Component,基本信号组件)库和TSF(Test SignalFramework,测试信号框架)库进行描述,也可以使用BSC 库和TSF 库中基本信号的组合自定义测试需要的复杂信号。以直流电压测量能力为例,幅值范围为-400~400 V,精度为0.1%,其ATML描述如下:

 

 

(2)定义逻辑资源

逻辑资源定义了仪器内部的功能模块,用于连接仪器的信号能力与物理端口。图2所示的万用表资源包含4个逻辑端口:P1、P2、P3、P4.

(3)定义仪器的物理端口

物理端口定义了仪器的外部端口,图2 中的端口:

HI、LO、Sense_HI、Sense_LO.

(4)将信号能力映射到资源

仪器描述文档中使用CapabilityMap元素描述信号能力与逻辑资源间的映射关系。其结构为:Capability-Map/Mapping/Map/Node/Path.通过增加Mapping 元素,将多个信号映射到同一个资源,可以描述一个资源能够产生/测量多个信号,但是同一时刻只能产生/测量其中的一个信号;通过增加Mapping 元素,将一个信号映射到多个资源,可以描述一个信号可以由多个资源产生/测量;通过在同一Mapping元素中将多个信号映射到一个资源,可以描述一个资源能够同时产生/测量多个信号;通过在同一Mapping 元素中将一个信号映射到多个资源,可以描述一个信号占用多个资源;通过在同一Map-ping元素中添加多个Map元素,可以描述信号与资源间多个端口的连接;通过在同一Map 元素中添加多个Node 元素,可以描述信号与资源间一对多或多对一的连接;Path元素用于描述能力或资源端口在仪器描述文档中的位置。通过上述搭配组合,可以完成对具体仪器功能间相互依赖或约束等复杂关系的描述。

(5)将资源连接到物理端口

仪器描述文档中使用NetworkList元素描述逻辑资源与物理端口间的连接关系。其结构为:NetworkList/Network/Node/Path.通过增加Network 元素,描述资源与端口间的多条逻辑连接线路;Path元素用于描述资源端口和物理端口在仪器描述文档中的位置。

2 测试需求描述

ATML在测试描述文档中使用STD对测试需求进行了描述,UUT的所有端口和测试点所需的激励信号或测量信号在元素TestDescription/DetailedTestInformation/Action/Behavior中描述。Behavior元素的结构如图3所示。

 

 

其中Operations元素和IeeeStd1641元素包含对STD标准的引用。以Operations元素为例,说明ATML 中对测试需求的描述方法。Operations 元素使用17 种预定义类型的操作(Operation)来描述Behavior的行为,其中OperationSetup 类型的操作用于创建需求信号,Opera-tionConnect类型的操作用于将信号连接到UUT的端口或测试点。使用OperationConnect 操作将OperationSet-up 中创建的信号signal1 连接到UUT 的某个端口,可以描述UUT该端口的需求信号为signal1信号。

3 仪器资源分配模块设计

仪器资源分配模块通过对测试需求与测试资源能力进行信号匹配,实现仪器资源端口到UUT端口的映射。采用UML(Unified Modeling Language,统一建模语言)描述仪器资源分配模块的设计方案,其用例图如图4所示。

 

 

在仪器资源分配模块中,通过加载测试描述文件、测试工作站描述文件和仪器描述文件,获取测试需求信息和测试系统能力信息,通过信号匹配实现仪器资源的分配。通过对图4 的分析,对用例进行抽象,得到仪器资源分配模块的类图如图5所示。

 

 

对类图中涉及到的类简单介绍如下:

(1)仪器资源管理类:根据UUT各端口的信号需求及仪器能力列表分配仪器,生成仪器工作方式配置信息,并根据仪器与测试工作站的连接关系,得到工作站与UUT 的连接关系,最终生成UUT 端口到工作站端口的物理连接信息。

(2)仪器类:加载仪器描述ATML文档,解析该文档得到仪器能力、逻辑资源、仪器端口及能力到端口的映射信息;根据仪器资源分配结果,生成仪器工作方式配置文件。

(3)测试描述类:加载测试描述描述ATML文档,解析该文档得到UUT端口、测点及需求信号信息。

(4)测试工作站类:加载测试工作站描述ATML 文档,解析该文档得到测试工作站端口、仪器资源信息及仪器与工作站的连接信息。

(5)物理连接类:根据仪器资源分配结果,生成UUT端口到测试工作站端口的物理连接文件。

通过对仪器资源分配模块静态模型的分析,得出系统对象随时间交互的序列图如图6所示。

 

 

由图6 可知,仪器资源分配的过程为:解析测试描述文件,得到UUT各端口的需求信号;解析测试工作站描述,得到工作站中所有的测试仪器信息及仪器与工作站的连接关系;解析仪器描述文件,得到仪器能力列表及仪器能力到仪器端口的连接信息;根据UUT 各端口的信号需求及仪器能力列表分配仪器,生成可重构仪器工作方式配置文件,并根据仪器与工作站的连接关系,得到工作站与UUT 的连接关系,生成UUT 端口到测试工作站端口的物理连接文件。

以活动图的形式,对分配仪器资源操作进行说明,如图7所示。

分配仪器资源的过程如下:

(1)查询UUT 端口需求信号列表,获取UUT 端口UUT_Port的需求信号R_Signal;若列表空则退出;

(2)查询信号能力列表,获取满足需求信号R_Sig-nal的信号能力A;若失败则R_Signal未匹配成功,当前测试配置不能满足测试需求,转到(1);

(3)查询CapabilityMap 列表,获取包含信号A 的映射Mapping;若失败转到(2);

(4)由映射Mapping获取产生/测量信号A的资源R;

(5)由资源列表查询资源R 是否空闲,若资源R 已使用,转到(3);若资源R 空闲,转到(6);若资源R 条件空闲(即资源R能够同时产生/测量多种信号,且已使用资源R产生/测量其中的一种或多种信号),转到(7);

(6)查询仪器的NetworkList列表,获取资源R 连接的仪器端口INST_Port;查询测试工作站的NetworkList列表,获取INST_Port连接的工作站端口Sta_Port,生成Sta_Port与UUT_Port的连接;测试仪器调用信号能力A对应的面向信号的仪器驱动,由INST_Port端口产生/测量UUT_Port端口的需求信号R_Signal;转到(1)继续匹配下一项;

(7)查询资源R与仪器端口、工作站、UUT的连接列表,获取资源R 已连接的UUT 端口R_UUT_Port;比较UUT端口UUT_Port和R_UUT_Port,若二者相同,则使用UUT_Port 已连接的仪器产生/测量信号R_Signal,转到(1)继续匹配下一项;若二者不同,则转到(3)。

当有多个仪器满足测试需求时,应以一定的原则将仪器进行排序,确定最终选用的测试仪器。可以参考按照精度最高、按照仪器均衡使用、按照仪器使用习惯等调度方式进行测试。

 

 

4 结语

本文研究了ATML 中对测试系统能力和测试需求的面向信号描述方法,并给出具体的描述实例;使用UML详细设计了仪器资源分配模块的软件结构。仪器资源分配模块通过对测试系统能力和测试需求进行信号匹配,为UUT 的待测端口分配仪器资源。面向信号的资源分配方法提高了ATS中TPS的可移植性,本文提出的方法可以为其他类似研究提供指导。

关键字:自动测试系统  资源分配 编辑:探路者 引用地址:一种面向信号的自动测试系统资源分配方法设计

上一篇:传输型CCD 相机成像分辨率自动测试研究
下一篇:基于myDAQ的远程多对象控制系统的设计方案

推荐阅读最新更新时间:2023-10-12 22:33

PWM电路自动测试系统设计方案
  LabVIEW简介:LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显着区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。   自动测试系统(ATS)是指能自动完成测量、数据处理、显示(输出)测试结果的一类系统的总称。在不同的技术领域里,测试内容、要求、条件和自动测试系统各不相同,但都是利用计算机代替人的测试活动。一般自动测试系统包括控制器、激励源、测量仪表、 开关 系统、人机接口和被测单元一机器接口等部分。本自动测试系统的测试对象是PWM电路板,如图1所示。
[测试测量]
PWM电路<font color='red'>自动测试系统</font>设计方案
自动测试系统的通用性研究
1.前言 ATS的发展经历了从专用型向通用型的转变。早期的自动测试系统主要针对具体的被测对象型号或系列。随着现代科学技术的发展,计算机技术的应用越来越广泛应用,致使各种武器装备的结构日趋复杂,种类不断增多。武器装备复杂性的提高,使得检测设备的数量与种类也越来越多。这些设备互不兼容,缺乏互操作性,测试资源重复配置、利用率低。给武器装备的技术保障及机动作战的实施带来了许多困难。因此,近十几年来,通用自动测试系统的开发成为主流。 2.ATS的通用性属性 通用性描述了ATS的一种属性,这种属性可使TPS(测试程序集)在另一型ATS上运行并顺利完成UUT(被测装备)测试及故障诊断。通用ATS注重于采用公共的测试资源去适应不同的测试需要
[测试测量]
<font color='red'>自动测试系统</font>的通用性研究
自动测试系统中的波形数字化示波器
功能完整的数字电子示波器   电子示波器是实验室、工厂和现场的工程人员广泛使用的仪器,事实上电子示波器也是通过电子测试测量仪器类中,销量最大和销售金额最高的产品。在30年代末至40年代初,受电视广播和雷达测距迅速发展的市场驱动,模拟电子示波器基本定型,划分为垂直放大、横向扫描、触发同步和示波管(CRT)显示的四大部分。模拟电子示波器的实时带宽在70年代达到1000MHz的高峰,随着数字技术和集成电路的出现,以真空管和宽带放大电路为主导的模拟电子示波器,从80年代开始逐步由数字电子示波器所取代。随着信息技术和数字通信市场的爆炸性发展,在90年代后斯数字电子示波器的实时带宽已超过1GHz。进入二十一世纪2010年代,数
[测试测量]
<font color='red'>自动测试系统</font>中的波形数字化示波器
中北恒驭军用车载雷达自动测试系统解决方案
随着电子装备的现代化、高科技化和复杂化,要求对电子装备进行现场快速测试,这就必须依靠 自 动测试系统来完成。雷达自动测试系统是在 PCI总线测试软件平台 的基础上,针对雷达整机测试的需要,成功研制的军用车载PCI雷达自动测试系统。 来自于雷达的所有待测信号通过信号接口适配器后送往微波开关。微波开关与信号源、频谱仪、示波器和功率计相连,根据测试的需要将待测信号分别送往测试仪器处理。经处理后的测试结果由PCI总线返回内嵌式控制器,由控制器中运行的测试软件对测试结果作进一步分析处理。整个测试过程中微波开关和测试仪器的动作均由控制器中的测试软件通过总线进行自动控制。
[测试测量]
中北恒驭军用车载雷达<font color='red'>自动测试系统</font>解决方案
航空电子自动测试系统?交给虚拟仪器完成
系统硬件设计:   PXI模块化仪器相对于GPIB、VXI、RS232等仪器而言,具有速度快、体积小、易扩展等优势,因此在硬件方面以PXI模块化仪器为主,选用常规信号源(SOURCE)和信号测量模块(SENSOR),通过 GPIB和RS232总线扩展专用和自研设备。系统硬件原理图见图1。      由于PXI模块较多,且为了今后的扩展,选用了18槽的PXI-1045机箱;为了进一步提高系统平台的集成度,选用了PXI-8187零槽嵌入式控制器,摒弃了以往系统中利用MXI-2将工控机作为主控器的方式,PXI-8187带有GPIB接口,可以方便的扩展GPIB总线设备。部分仪器资源和部件需要串口通讯,故选用PXI-842
[模拟电子]
航空电子<font color='red'>自动测试系统</font>?交给虚拟仪器完成
虚拟仪器在手机电路板自动测试系统的解决方案
项目描述 该系统利用 National Instruments 公司的软件平台 Labview7.1 和硬件平台,实现手机电路板上各点电压信号的实时采集、分析处理,和被测数据的实时记录和统计,达到快速准确判断电路板是否合格的目的。 测试原理 将生产好后的两块面板放入手机电路板测试机箱的卡槽中,当检测到5V触发信号后,系统开始对面板进行检测。每块面板各有四个点的电压待测量,同时将电压值转换为流明值,每块面板的4个值有一个不在正常工作范围内,该面板不合格;反之,该面板合格。 系统包括硬件和软件两个部分组成,系统的组成框图如图所示。硬件由NI公司提供的PCI-6220M系列多功能采集卡。软件是在Labview7.1平台上进
[测试测量]
虚拟仪器在手机电路板<font color='red'>自动测试系统</font>的解决方案
温补晶振补偿电压自动测试系统
温度补偿石英晶体振荡器(TCXO)由于具有较高的频率稳定度,作为一种高精度频率源被广泛地应用于通讯系统、雷达导航系统、精密测控系统等。温补晶振由石英晶体振荡电路和温度补偿网络两部分组成。其中,温度补偿网络的优化设计对于改善温补晶体振荡器的温频特性,提高振荡器的频率精度具有重要意义。 1 温补晶振温度补偿原理 温补晶振由石英晶体振荡电路和温度补偿网络两部分组成。典型的温补晶振原理示意图如图1所示。 振荡器的频率温度特性主要由晶体谐振器的频率温度特性决定。常用的AT切晶体谐振器的频率温度特性为三次曲线,温补晶振温度补偿的原理就是通过改变振荡回路中的负载电容,使其随温度变化来补偿谐振器由于环境温度变化所产生的频率
[工业控制]
温补晶振补偿电压<font color='red'>自动测试系统</font>
VTC 6100作为蜂窝网络测试的自动测试系统
VTC 6100作为蜂窝网络测试和RF射频站点调查的自动测试系统   VTC 6100 车载PC特别用于移动车载操作,并有相应的行业标准,包括e13 和 EN 50155认证。这个坚固的PC是基于超紧凑铝制机箱设计,具有卓越的耐冲击和抗振动性能。因移动通讯,导航和追踪等应用功能,VTC 6100 支持GSM, GPRS, GPS, WCDMA, HSDPA, WLAN 和 Bluetooth。同时提供智能引擎点火检测,电源开/关延迟控制等功能,使之能适应各种车载电源条件。此外,电源开/关延迟设置和低压保护设置都可以由软件控制。为提高灵活性, VTC 6100 同时支持6–36V DC电源输入和外接的智能电池备份作为不间断电源
[测试测量]
VTC 6100作为蜂窝网络测试的<font color='red'>自动测试系统</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved