轻松了解EMI及其抑制方法

最新更新时间:2014-01-13来源: 电源网关键字:EMI  抑制方法 手机看文章 扫描二维码
随时随地手机看文章

EMI翻译成中文就是电磁干扰。其实所有的电器设备,都会有电磁干扰。只不过严重程度各有不同。电磁干扰会影响各种电器设备的正常工作,会干扰通信数据的正常传递,虽然对人体的伤害尚无定论,但是普遍认为对人体不利。所以很多国家和地区对电器的电磁干扰程度有严格的规定。当然电源也不例外的,所以我们有理由好好了解EMI以及其抑制方法。

 下面结合一些专家的文献来描述EMI.

首先EMI 有三个基本面

就是

噪音源:发射干扰的源头。              如同传染病的传染源

耦合途径:传播干扰的载体。           如同传染病传播的载体,食物,水,空气.......

接收器:被干扰的对象。                   被传染的人。

缺少一样,电磁干扰就不成立了。所以,降低电磁干扰的危害,也有三种办法:

1. 从源头抑制干扰。

2.切断传播途径

3.增强抵抗力,这个就是所谓的EMC(电磁兼容)

先解释几个名词:

传导干扰:也就是噪音通过导线传递的方式。

辐射干扰:也就是噪音通过空间辐射的方式传递。

差模干扰:由于电路中的自身电势差,电流所产成的干扰,比如火线和零线,正极和负极。

共模干扰:由于电路和大地之间的电势差,电流所产生的干扰。

通常我们去实验室测试的项目:

传导发射:测试你的电源通过传导发射出去的干扰是否合格。

辐射发射:测试你的电源通过辐射发射出去的干扰是否合格。

传导抗扰:在具有传导干扰的环境中,你的电源能否正常工作。

辐射抗扰:在具有辐射干扰的环境中,你的电源能否正常工作。首先来看,噪音的源头:

任何周期性的电压和电流都能通过傅立叶分解的方法,分解为各种频率的正弦波。

所以在测试干扰的时候,需要测试各种频率下的噪音强度。

那么在开关电源中,这些噪音的来源是什么呢?

开关电源中,由于开关器件在周期性的开合,所以,电路中的电流和电压也是周期性的在变化。那么那些变化的电流和电压,就是噪音的真正源头。

那么有人可能会问,我的开关频率是100KHz的,但是为什么测试出来的噪音,从几百K到

几百M都有呢?

我们把同等有效值,同等频率的各种波形做快速傅立叶分析:

蓝色: 正弦波

绿色:  三角波

红色: 方波

可以看到,正弦波只有基波分量,但是三角波和方波含有高次谐波,谐波最大的是方波。

也就是说如果电流或者电压波形,是非正弦波的信号,都能分解出高次谐波。

那么如果同样的方波,但是上升下降时间不同,会怎样呢。同样是100KHz的方波

红色:上升下降时间都为100ns

绿色:上升下降时间都为500ns

可以看到红色的高次谐波明显大于绿色。

我们继续分析下面两种波形,

A: 有严重高频震荡的方波, 比如MOS,二极管上的电压波形。

B:用吸收电路,把方波的高频振荡吸收一下。

分别做快速傅立叶分析:

可以看到在振荡频率(大概30M)之后,A波形的谐波,要大于B波形。

再来看,下面的波形,一个是具有导通尖峰的电流波形,一个没有导通尖峰。

对两个波形做傅立叶分析:

 

可以看到红色波形的高次谐波,要大于绿色波形。

继续对两个波形,作分析

红色: 固定频率的信号

绿色:具有稍微频率抖动的信号

可以看到,频率抖动,可以降低低频段能量。进一步,放大低频段的频谱能量:

可以看到,频率抖动就是把频谱能量分散了,而固定频率的频谱能量,集中在基波的谐波频率点,所以峰值比较高,容易超标。

最后稍微总结一下,如果从源头来抑制EMI。

1.对于开关频率的选择,比如传导测试150K-30M,那么在条件容许的情况下,可选择130K之类的开关频率,这样基波频率可以避开测试。

2.采用频率抖动的技术。频率抖动可以分散能量,对低频段的EMI有好处。

3.适当降低开关速度,降低开关速度,可以降低开关时刻的di/dt,dv/dt。对高频段的EMI有好处。

4.采用软开关技术,比如PSFB,AHB之类的ZVS可以降低开关时刻的di/dt,dv/dt。对高频段的EMI有好处。而LLC等谐振技术,可以让一些波形变成正弦波,进一步降低EMI。

5.对一些振荡尖峰做吸收,这些管子上的振荡,往往频率很高,会发射很大的EMI.

6.采用反向恢复好的二极管,二极管的反向恢复电流,不但会带来高di/dt.还会和漏感等寄生电感共同造成高的dv/dt.下面来看一下传播途径,这个是poon & Pong 两位教授总结的

传播途径,比较的直观全面

 

我们先来看传导途径:

传导干扰的传递都是通过电线来传递的,测试的时候,使测试通过电线传导出来得干扰大小。

也就是说对电源来说,所有的传导干扰都会通过输入线,传递到测试接收器。

那么这些干扰如何传递到接收器的?又要如何来阻挡这些干扰传递到接收器呢?

先来看差模的概念,差模电流很容易理解,如下图,

差模电流在输入的火线和零线(或者正线到负线)之间形成回路,用基尔霍夫定理可以很容易理解,两条线上的电流完全相等。

而这个差模电流除了包含电网频率(或者直流)的低频分量之外,还有开关频率的高频电流,如果开关频率的电流不是正弦的,那么必然还有其谐波电流。

现在以最简单的,具有PFC功能的DCM 反激电源为例子,(如上图)其输入线上的电流如下:

如将其放大:

可以看到电流波形为,众多三角波组成,但是其平均值为工频的正弦。那么讲输入电流做傅立叶分析,可以得到:

可以看到,除了100Khz开关频率的基波之外,还有丰富的谐波。继续分析到更高频率,可以看到:

如果不加处理,光差模电流就可以让传导超标。

那么如何,来阻挡这些高频电流呢?最简单有效的,就是加输入滤波器。例子1,在输入端加一个RC滤波器:

 

在对输入电流做傅立叶分析:

可以看到高频谐波明显下降

如果加LC滤波器:

对输入电流做分析:

可以看到滤泡效果更好,但是在低频点却有处更高了。这个主要是LC滤波器谐振导致。

而实际 电路中,由于各种阻抗的存在。LC不太容易引起谐振,但是也会偶尔发生。

如果在传导测试中发现低频段,有非开关频率倍频的地方超标,可以考虑是否滤波器谐振。

关键字:EMI  抑制方法 编辑:探路者 引用地址:轻松了解EMI及其抑制方法

上一篇:电磁兼容测量结果可追溯性技术探讨
下一篇:如何实现电磁兼容

推荐阅读最新更新时间:2023-10-12 22:33

是德科技为MXE EMI 接收机故障诊断功能增加实时频谱分析选件
选件能揭示通常很难发现的宽带瞬态信号 可以更容易地观察和理解用传统频谱或信号分析仪很难捕获的高速瞬态信号 让用户更快速、更轻松地分析瞬态信号 是德科技公司(NYSE:KEYS)日前宣布推出专为符合标准的 MXE EMI 接收机设计的实时频谱分析(RTSA)选件。通过添加 RTSA 到 MXE 接收机,测试实验室可以对在电磁兼容性(EMC)一致性和预先一致性测试中的宽带瞬态信号进行观察和故障诊断。 使用 RTSA,工程师可以更容易地观察和理解用传统频谱或信号分析仪很难捕获的高速瞬态信号,RTSA 非常适合经常遇到高速瞬态信号的雷达、汽车和无线通信等应用。
[测试测量]
抑制共模、差模信号的噪音方法
1 引言     了解 共模 和 差模 信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。变压器、共模扼流圈和自耦变压器的端接法,对在局域网(LAN)和通信接口电路中减小共模干扰起关键作用。共模噪音在用无屏蔽对绞电缆线的通信系统中,是引起射频干扰的主要因素,所以了解共模噪音将有利于更好地了解我们关心的磁性界面的电磁兼容论点。本文的主要目的是阐述差模和共模信号的关键特性和共模扼流圈、自耦变压器端接法主要用途,以及为什么共模信号在无屏蔽对绞电缆线上会引起噪音发射。在介绍这些信号特点的同时,还介绍了抑制一般噪音常用的方法。 2 差模和共模信号 我们研究简单的两线电缆,在它的终端接有负载阻抗。每一线对地的电压
[模拟电子]
如何设计EMI兼容的汽车开关稳压器
  不需要完全了解复杂的EMI,即可轻松设计EMI兼容的汽车开关稳压器。本文以没有复杂数学运算的直觉方式,分享成功实现开关稳压器的基本因素,主要包括:斜率控制、滤波器设计、元件选用、配置、噪声扩散及屏蔽。   汽车本身不断变化,驱动汽车的电子装置也是如此。其中最显著的莫过于插电式电动汽车(PEV),它们采用300V至400V的锂离子电池和三相推进马达取代取代燃气罐和内燃机。精密的电池组电量监控、再生制动系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。此外,现今的电动汽车或其它种类的汽车都具有许多可提升性能、安全、便利性及舒适感的电子模块。许多中档车均配备先进的全球定位系统(GPS)、集成DVD播放器及高性能音
[电源管理]
如何设计<font color='red'>EMI</font>兼容的汽车开关稳压器
怎样提高电子产品的EMC&EMI
如何提高电子产品的EMC & EMI 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 1、 下面的一些系统要特别注意抗电磁干扰: (1) 微控制器时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3) 含微弱模拟信号电路以及高精度A/D变换电路的系统。 2、 为增加系统的抗电磁干扰能力采取如下措施: (1) 选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正 弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但
[单片机]
TI工程师:如何设计EMI兼容的汽车开关稳压器
  不需要完全了解复杂的EMI,即可轻松设计EMI兼容的汽车开关稳压器。本文以没有复杂数学运算的直觉方式,分享成功实现开关稳压器的基本因素,主要包括:斜率控制、滤波器设计、元件选用、配置、噪声扩散及屏蔽。   汽车本身不断变化,驱动汽车的电子装置也是如此。其中最显著的莫过于插电式电动汽车(PEV),它们采用300V至400V的锂离子电池和三相推进马达取代取代燃气罐和内燃机。精密的电池组电量监控、再生制动系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。此外,现今的电动汽车或其它种类的汽车都具有许多可提升性能、安全、便利性及舒适感的电子模块。许多中档车均配备先进的全球定位系统(GPS)、集成DVD播放器及高性
[电源管理]
TI工程师:如何设计<font color='red'>EMI</font>兼容的汽车开关稳压器
解决EMI传导干扰8大绝招
电磁干扰EMI中电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰称为传导干扰。传导干扰给不少电子工程师带来困惑,如何解决传导干扰?找对方法,你会发现,传导干扰其实很容易解决,只要增加电源输入电路中EMC滤波器的节数,并适当调整每节滤波器的参数,基本上都能满足要求,第七届电路保护与电磁兼容研讨会主办方总结八大对策,以解决对付传导干扰难题。 对策一:尽量减少每个回路的有效面积 图1 传导干扰分差模干扰DI和共模干扰CI两种。先来看看传导干扰是怎么产生的。如图1所示,回路电流产生传导干扰。这里面有好几个回路电流,我们可以把每个回路都看成是一个感应线圈,或变压器线圈的初、次级,当某个回路中有电流流过时,另
[电源管理]
解决<font color='red'>EMI</font>传导干扰8大绝招
EMI控制方法:屏蔽、滤波、接地一
我们知道,造成设备性能降低或失效的电磁干扰必须同时具备三个要素,首先是有一个电磁场所,其次是有干扰源和被干扰源,最后就是具备一条电磁干扰的耦合通路,以便把能量从干扰源传递到受干扰源。因此,为解决设备的电磁兼容性,必须围绕这三点来分析。一般情况下,对于EMI的控制,我们主要采用三种措施:屏蔽、滤波、接地。这三种方法虽然有着独立的作用,但是相互之间是有关联的,良好的接地可以降低设备对屏蔽和滤波的要求,而良好的屏蔽也可以使滤波器的要求低一些。下面,我们来分别介绍屏蔽、滤波和接地。   1屏蔽   屏蔽能够有效的抑制通过空间传播的电磁干扰。采用屏蔽的目的有两个,一个是限制内部的辐射电磁能量外泄出控制区域,另一个就是防止外来的辐
[模拟电子]
<font color='red'>EMI</font>控制<font color='red'>方法</font>:屏蔽、滤波、接地一
白光LED驱动器在手机设计中EMI问题的考虑
目前手机普遍采用白光LED作为显示屏幕的背光元件,相应的白光LED驱动器成为一颗在手机设计中不可或缺的IC。白光LED驱动器采用开关电源拓扑结构,如电感式升压转换器。转换器在高速开关的同时,由于使用电感产生EMI干扰,会给手机其他功能模块的设计带来困难。随着LCD屏幕的增大,驱动器所需的输出能力也相应增加,EMI干扰也会变得严重。因此设计白光LED驱动器时对EMI的考虑必需认真对待。 德州仪器推出的TPS61161升压转换器除了提供10颗LED的驱动能力外,在EMI问题上也有相应的设计考虑,其典型应用如图1所示。在TPS61161开关设计上采取两次开关过程,有效降低了EMI的辐射强度,从而避免驱动器对手机其他模块的影响。
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved