技术秘技:大容量磷酸铁锂电池需要大功率充电器

最新更新时间:2014-05-12来源: 互联网关键字:锂电池  充电器 手机看文章 扫描二维码
随时随地手机看文章

  患者护理领域的主要趋势之一,是在患者家中越来越多地使用远程监视系统。出现这种趋势的原因很明显,让患者住在医院的费用太高了,令人难以承受。因此,很多这类便携式电子监视系统纳入了 RF 收发器,以便数据能直接发到医院中的监察系统中,供医生研究和分析之用。显然,这类系统通常由 AC 电源、电池或同时由二者供电。为了确保在除医院之外的其他地点使用时,系统能连续工作,这种冗余性是必要的。此外,在便携式医疗诊断设备领域取得了很多新的进展,例如医生和护士到处携带的设备,都将电池作为主电源,或将电池作为备份电源,以防 AC 电源中断。这类系统需要高效率电池充电电路。

  除了医疗应用,便携式工业银行终端、坚固耐用的平板电脑、库存控制和条码扫描设备等都需要单节大容量电池,以减小外形尺寸和重量。基于锂材料的电池一直是最流行的选择。然而,要快速、准确和安全地给这类电池充电,却不是非微不足道的事情。此外,人们一直在开发新的、基于锂的化学阳极/阴极组合,这类组合也在不断地推向主流市场。这种趋势的一个例子是,磷酸铁锂 (LiFePO4) 电池已在许多应用中崭露头角,与基于钴的锂离子 / 锂聚合物电池相比,磷酸铁锂电池可提供更高的安全性和更长的电池寿命。而且这种化学组成的电池还同时具备基于钴的锂离子电池所具备的其他许多优势,包括较低的自放电速率和相对较轻的重量。相比之下,除了改善安全性 (因为具有抗“热失控”能力) 及延长电池循环寿命之外,磷酸铁锂电池具备更高的峰值功率额定值,对环境影响更小。通常医疗和工业应用愿意接受磷酸铁锂电池更低的单位体积能量密度,以换取更高的安全性和更长的周期寿命。备份应用需要更长的周期寿命,且要能以大电流放电。

  怎样得到更大的功率

  很多手持式工业或医疗设备的电源架构常常与大显示屏智能手机的电源架构类似。一般情况下,3.7V(最终充电或“浮置”电压为 4.2V)锂离子电池一直用作主电源,因为其单位重量能量密度 (Wh/kg) 和单位体积能量密度 (Wh/m3) 很高。过去,很多大功率设备使用两节 7.4V (8.4V 浮置电压) 锂离子电池,以满足功率要求,但是由于价格低廉的 5V 电源管理 IC 的上市,越来越多的手持式设备采用了更低电压的架构,这使得可以使用单节锂离子电池。典型的便携式医疗或工业设备具有很多功能和非常大(就便携式设备而言)的显示屏。当用 3.7V 电池供电时,其容量必须以数千毫瓦小时计。为了用几小时给这么大容量的电池充电,就需要几安培的充电电流。

  不过,即使需要这么大的充电电流,在没有大电流交流适配器可用时,用户依然想用 USB 端口给他们的大功率设备充电。为了满足这种要求,当有交流适配器可用时,电池充电器必须能以大电流 (》2A) 充电,但是仍然能高效率地利用 USB 端口可提供的 2.5W 至 4.5W 功率。此外,该 IC 产品需要保护敏感的下游低压组件,使它们免受可能由损坏导致的过压事件的影响,并高效率地将大电流从 USB 输入、交流适配器或电池引导到负载,以最大限度地减少以热量形式损失的功率。同时,该 IC 必须安全地管理电池充电算法,并监视关键的系统参数。

  磷酸铁锂电池较低的 3.6V 浮动电压导致无法使用标准的锂离子电池充电器。如果充电不当,就有可能对这种电池造成无法修复的损坏。准确的浮动电压充电将延长电池的寿命。与基于钴的锂离子电池相比,LiFePO4 电池的优点包括体积能量密度 (每单位体积的容量) 较高,而且不容易过早地出现故障 (倘若新电池过早地“深度循环”)。

  主要设计限制总结如下:

  · 大容量电池需要大的充电电流和高效率

  · 很多便携式应用,包括工业和医疗设备,都需要 USB 兼容充电所提供的便利性

  · 磷酸铁锂电池有特殊充电要求,即更低的浮置电压,与锂离子电池相比有一些令人欣慰的优势

  上面讨论的任何满足这些设计限制的 IC 解决方案都必须是紧凑和单片型的,能应对快速、高效率给单节大容量电池充电的问题,并与磷酸铁锂等新的化学组成兼容。这样的设备会成为催化剂,能提高采用大容量电池的便携式工业和医疗产品在全球的采用率。

  应对采用单节电池的便携式设备的功率挑战

  尽管上述要求也许看似不可能用单片 IC 来满足,但是看一下 LTC4156 吧。LTC4156 紧随流行的、基于锂材料的 LTC4155 而来,是一款大功率、I2C 控制、高效率电源通路 (PowerPath?) 管理器、理想二极管控制器和磷酸铁锂 (LiFePO4) 电池充电器,适用于采用单节电池的便携式应用,例如便携式医疗和工业设备、备份设备和高功率密度电池供电应用。该 IC 为从各种电源高效率传送高达 15W 的功率而设计,同时最大限度地降低了功耗,并减轻了热量预算限制。LTC4156 的开关电源通路拓扑无缝地管理从两个输入电源,例如交流适配器和 USB 端口,到设备的可再充电磷酸铁锂电池的功率分配,同时当输入功率有限时,优先向系统负载供电。参见图 1。

图 1:LTC4156 的典型应用电路

  由于节省功率,所以 LTC4156 允许输出负载电流超过输入电源吸取的电流,从而能最大限度地利用可用功率给电池充电,而不会超出输入电源供电规格。例如,当用 5V/2A 交流适配器供电、可用功率为 10W 时,该 IC 的开关稳压器能高效率传送超过 85% 的可用功率,提供高达 ~2.4A 的充电电流,并能更快速地充电。与普通开关电池充电器不同,LTC4156 具备即时接通工作能力,以确保甚至在电池已深度放电时,一插上插头系统就可以供电。由于支持 USB OTG (On-the-Go),所以无需任何额外的组件,就能反过来向 USB 端口提供一个 5V 电源。

  LTC4156 的自主全功能单节磷酸铁锂电池充电器能提供高达 3.5A 的充电电流,具备 15 种用户可选的充电电流设置。该充电器包括自动再充电、坏电池检测、可编程安全定时器、热敏电阻控制的温度合格的充电、可编程充电结束指示 / 终止以及可编程中断。LTC4156 采用扁平 (0.75mm) 28 引脚 4mm x 5mm QFN 封装,在 -40°C 至 125°C 的温度范围内工作有保证。

  高效率内部开关稳压器

  LTC4156 的开关稳压器工作起来像一个变压器,允许 VOUT 端的负载电流超过输入电源吸取的电流,而且与典型线性模式充电器相比,充分利用可用功率给电池充电的能力得到了极大的改善。前述例子说明,LTC4156 可以怎样以高达 3.5A 的电流高效地充电,从而实现了更快的充电速度。与普通开关电池充电器不同,LTC4156 具备即时接通工作能力,以确保甚至在电池没电或已深度放电时,一插上电源就可向系统供电。

图 2:LTC4156 VOUT 效率随负载电流变化的曲线

  对电池而言更安全

  在对电池快速充电时,监视电池的安全性是很重要的。当电池温度降至低于 0°C 或升至高于 60°C 时 (如一个外部负温度系数的 NTC 热敏电阻所测得的那样) ,LTC4156 会自动停止充电。除了这一自主性功能,LTC4156 还提供一个扩展标度的 7 位模数转换器 (ADC) ,以凭借约 1°C 的分辨率监视电池温度 (参见图 3) 。这个 ADC 与 4 个可用的浮置电压设置和 15 个电池充电电流设置相结合,可用来建立基于电池温度的定制充电算法。

图 3:7 位热敏电阻 ADC 显示预置的 LTC4156 温度跳变点

  可通过一个简单的两线 I2C 接口读取 NTC ADC 的结果,从而能对充电电流和电压设置进行调整。该通信总线允许 LTC4156 指示额外的状态信息,例如输入电源状态、充电器状态和故障状态。由于支持 USB On-The-Go,所以无需任何附加组件,就能反过来向 USB 端口提供一个 5V 电源。

  高效率内部开关稳压器

  LTC4156 的开关稳压器工作起来像一个变压器,允许 VOUT 端的负载电流超过输入电源吸取的电流,而且与典型线性模式充电器相比,充分利用可用功率给电池充电的能力得到了极大的改善。前述例子说明,LTC4156 可以怎样以高达 3.5A 的电流高效地充电,从而实现了更快的充电速度。与普通开关电池充电器不同,LTC4156 具备即时接通工作能力,以确保甚至在电池没电或已深度放电时,一插上电源就可向系统供电。

图 2:LTC4156 VOUT 效率随负载电流变化的曲线

  对电池而言更安全

  在对电池快速充电时,监视电池的安全性是很重要的。当电池温度降至低于 0°C 或升至高于 60°C 时 (如一个外部负温度系数的 NTC 热敏电阻所测得的那样) ,LTC4156 会自动停止充电。除了这一自主性功能,LTC4156 还提供一个扩展标度的 7 位模数转换器 (ADC) ,以凭借约 1°C 的分辨率监视电池温度 (参见图 3) 。这个 ADC 与 4 个可用的浮置电压设置和 15 个电池充电电流设置相结合,可用来建立基于电池温度的定制充电算法。

图 3:7 位热敏电阻 ADC 显示预置的 LTC4156 温度跳变点

  可通过一个简单的两线 I2C 接口读取 NTC ADC 的结果,从而能对充电电流和电压设置进行调整。该通信总线允许 LTC4156 指示额外的状态信息,例如输入电源状态、充电器状态和故障状态。由于支持 USB On-The-Go,所以无需任何附加组件,就能反过来向 USB 端口提供一个 5V 电源。

关键字:锂电池  充电器 编辑:探路者 引用地址:技术秘技:大容量磷酸铁锂电池需要大功率充电器

上一篇:TTL电平和CMOS电平总结
下一篇:电源设计中不可或缺的电容细谈

推荐阅读最新更新时间:2023-10-12 22:40

分析师:车用电池价格下滑速度将高于预期
   随着电动车的技术与基础零组件快速到位,市场研究机构预测做为关键组件的车用电池价格可在五年内减半;不过电池原材料方面的瓶颈,可能也会成为车辆电气化路途上的障碍。     在德国法兰克福车展(IAA motor show)期间,市场分析机构CSM的分析师Greg Mount预测,目前汽车产业所面临的危机将只是暂时现象;到2010年市场需求可望趋于稳定,该年度全球车辆销售额预计可成长6%。不过Mount指出欧洲汽车市场复苏速度会稍慢,2010年预测成长率为5%;至于美国市场的表现则会优于全球平均成长率。   在电动车与插电型混合动力车市场方面,CSM认为要建立一定规模,必须符合六个关键性的条件,它们分别是:高油价、充电站基
[汽车电子]
特斯拉更换便宜的18650锂电池,理由何在?
2017年2月19日,一辆特斯拉Model X在沈海高速广州支线北行8公里800米路段发生事故,随后起火爆炸,又将特斯拉推向了令人怀疑的方向,特斯拉这样的大厂为什么要用这种廉价的18650电池呢,是为了节省成本欺骗中国的消费者吗? 目前而言电池的出现确实解决了很多的问题,极大的提高各种生活效率,而锂电池的出现更加使得人们对电的认识越来越深入了,18650锂电池就是使用时间最为悠久,并且目前依然存在的一种锂电池,在很多地方领域都能够看到18650锂电池的影子。 关于特斯拉的18650电池。小编在此给出一个具体数据。特斯拉汽车底座安放了7200个左右的18650电池,通过串并联方式和特斯拉特有的智能系统给汽车提供超足的动能。7
[汽车电子]
尼吉康开发出带供电插座的电动汽车充电器
    日本尼吉康宣布,开发出了紧急时可由纯电动汽车(EV)直接向电气设备供应电力的EV用充电器“EV Power Station Concent Model”,将于2013年10月上旬开始销售(图)。充电器主体上安装有防水型供电插座,能把EV电池的电力提供给外部,这样就能把EV作为应急电源使用。     这款充电器是针对企业及地方政府的业务连续性计划(BCP)措施推出的,是全球首款带供电插座的EV充电器。输出电压为AC100V,频率为50Hz或60Hz,输出功率低于6kW。外形尺寸为长650mm×宽350mm×高780mm,不含电线的重量约为70kg。另外,还具备“倍速充电”功能,向EV电池充电时能以通常两倍的速度充到80%
[汽车电子]
采用3mm x 4mm 紧凑封装的高效率USB电源管理器和电池充电器
2007 年 4 月 10 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出独立型高效率电源管理器、理想二极管控制器和电池充电器 LTC4088 ,该器件用于便携式 USB 装置。 LTC4088 的前端开关拓扑具有 PowerPath TM 控制,这优化了通过 USB 端口获得电源以对电池充电,并以最低功耗为应用装置供电。这个特点有助于减轻空间受限的媒体播放器、数码相机、 PDA 、 GPS 单元和智能电话的热量管理问题。该集成电路还允许负载电流大于从 USB 端口吸取的电流,
[新品]
充电器
充电器是采用高频电源技术,运用先进的智能动态调整充电技术的充电设备。 基本信息 中文名称 充电器 外文名称 Charger 特点 耐抗性能较强 原理 采用高频电源技术 充电器介绍 充电器(充电机)按设计电路工作频率来分,可分为工频机和高频机。工频机是以传统的模拟电路原理来设计,机器内部电力器件(如变压器、电感、电容器等)都较大,一般在带载较大运行时存在较小噪声,但该机型在恶劣的电网环境条件中耐抗性能较强,可靠性及稳定性均比高频机强。 而高频机是以微处理器(CPU芯片)作为处理控制中心,是将繁杂的硬件模拟电路烧录于微处理器中,以软件程序的方式来控制UPS的运行。因此,体积大大缩小,重量大大降低,制造成本低
[电源管理]
太阳能电池板电池充电器DIY制作
  我们渴望舒服一点的条件是,一个基于水雾系统而让人凉快的解决方案,以克服困扰这片沙漠的干热空气。这可以用一台由电压源供电、连着一个带喷嘴的喷雾水龙带的水泵实现。喷雾系统的成功要素是电源,这个电源也可以用来给 LED 灯供电,以供夜间照明,或者给其它需要电源的外部设备充电。我们的计划是,用太阳能电池板给一个海上用的深周期电池充电,然后用这块电池给其它所有东西供电。随即,我开始了太阳能电池板电池充电器的设计。   我有 3 周时间完成设计。我向朋友 Simon 请求帮助,Simon 以前用凌力尔特公司的 IC 搞过太阳能供电设计。除了一台显示工作原理的样机,Simon 还给了我一份原理图,这台样机从未连上太阳能电池板测试过,但在
[电源管理]
太阳能电池板电池<font color='red'>充电器</font>DIY制作
车载充电器是双赢解决方案
电动车 DC- DC 快速充电最好由车载转换器来解决,而不是更多的充电站 Vicor 展示了一种 虚拟电池 的模块化方法,能够解决电动汽车 DC 快速充电的问题(出自 Nick Flaherty)。 许多现有的 DC 快速充电器使用 400V 的电池组,而不是 800V 的版本。 2020 年,全球约有 40 万个可公开使用的 DC 快速充电器,但仅有 2% 支持 800V 车辆。例如在欧洲,4 万个充电站中只有 400 个支持 800V。 Vicor 首席汽车高级现场应用工程师 Haris Muhedinovic 表示,通过使用紧凑、高效和双向电源模块进行车载充电,可以解决这种不兼容性。 安装具有 250 至 9
[电源管理]
车载<font color='red'>充电器</font>是双赢解决方案
3D打印技术可制造任意结构的锂电池
据外媒报道,美国德克萨斯州立大学和杜克大学(Texas State and Duke Universities)的团队利用3D打印技术制作了一款LED手镯(LED bracelet)及自动调暗型LCD墨镜,两款设备均内置了锂离子电池。 该团队在其研究报告中写道:“3D打印锂离子电池可制作成任意结构,这不仅能够为既定产品设计提供定制版电池,还能提升电池结构件的应用。” 研究人员在实验中采用了熔丝制造(fused filament fabrication,FFF)3D打印机。 研究人员表示,目前主要的挑战在于提升打印熔丝内所用聚合物的离子导电性(ionic conductivity),研究人员将纤维浸入到电解液(electrolyte
[汽车电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved