基于UC1845的多路输出双管反激开关电源方案

最新更新时间:2014-05-18来源: 互联网关键字:UC1845  多路输出  双管反激开关电源 手机看文章 扫描二维码
随时随地手机看文章
引言

随着器件、工艺水平的飞速发展,开关型功率变换器已发展成高效、轻型的直流电源,空间飞行器(星、箭、船等)DC/DC变换器(又称二次电源)也采用该项技术。

主要原因是卫星电子设备对电源的效率、重量、体积和可靠性的要求越来越高,而传统的线性电源方案几乎无法满足飞行器系统的需要。在各种类型的DC/DC变换器中,PWM型DC/DC变换器因结构种类多,技术领先,便于实现,已经得到广泛应用。

在航天应用领域开关电源的多种拓扑中,可用于100V高压母线输入多路输出的开关电源,大多数采用的是两级式变换器,如Buck+推挽两级式变换器,先通过Buck电路将母线电压降压,这样母线电压要经过二次调整,使电压调整率降低;再从器件数量上来说,两级拓扑,功率开关管至少需要3个,电源体积大且功率密度低,从整体分析不是很理想;而对于可以承受高压输入的双管正激开关电源来说,电路结构相对简单,但其不适合用于多路输出的场合,输出交叉调整率较低,稳定度差;适合用于中小功率多路输出DC-DC变换器的电路拓扑还有是单管反激电路,其电路结构简单,成本低,但在高输入电压场合中单管反激电路主开关管的电压应力非常高,选用200V耐压的MOSFET管根本无法满足Ⅰ级降额的要求,如果选用更高耐压的MOSFET管,由于其导通电阻更高,势必影响电源的转换效率,同时还可能带来真空环境下的低气压放电问题。

因此为了克服以上所提到的问题,本文设计了一种星上用基于UC1845的多路输出双管反激开关电源,很适合应用于高压100V母线输入、多路输出场合。对于双管反激开关电源,首先,其电路拓扑简单,输入输出电气隔离升/降压范围广,具有输出多路负载自动均衡等优点;其次,由于航天电源对可靠性的要求,所有器件必须满足一级降额标准,在双管反激变换电路中,当功率管关断时,变压器漏感电流可通过续流二极管反馈给电源同时将开关管两端的电压箝位在电源电压,因此功率管所承受的电压应力和输入电压相等,使选管的范围扩大,可靠性提高;再次,双管反激开关电源电路漏感能量可以回馈到输入侧,无须增加任何吸收电路,因而转换效率也比单管反激电路高。因此将其运用于航天器高压输入多路输出场合,优势很大,具有实际的工程应用价值。

1、系统设计图

系统设计框图如图1所示。


图1 系统设计框图

2、双管反激拓扑结构

双管反激拓扑结构如图2所示。


图2 双管反激变换器的主拓扑

如图2所示,VT1和VT2分别串接于变压器的顶端和底端。两个开关管同时导通和关断,当它们导通时,所有初级和次级的同名端为正,此时次级VD3反偏,次级无电流流通,初级绕组储存能量;当它们关断时,存储于励磁电感上的电流使所有绕组电压极性反向,VD3正偏,励磁电感中储存的能量被传输到负载,而此时LP同名端电位被二极管VD2钳位至地,LP异名端电位被二极管VD1钳位至电源电压U1.所以,VT1的源极电压不会超过U1,VT2的漏极电压也不会超过U1.漏感尖峰被钳位,使任一开关管的最大电压应力都不会超过最大直流输入电压。

双管反激变换器还有一个显着的优点是没有漏感能量消耗。开关管导通时,存储于漏感中的所有能量不是消耗于电阻元件或功率开关管内,而是在开关管关断时通过VT1和VT2回馈给U1.漏感电流从LP的异名端流出,经VD1流入U1的正极,然后从其负极流出,经VD2返回LP的同名端,使漏感能量能回馈到输入侧,提高了整机的转换效率。

在航天电源中,对于高压100V母线输入电源,双管反激开关电源便显示出极大的优势。

3、UC1845控制电路

UC1845是由TexasInstruments公司生产的电流控制型PWM控制器,该芯片电路开关频率可调节,具有电流反馈和电压反馈双环控制的特点,电压调整率和负载调整率高。其内部功能模块框图如图3所示。图3中,UC1845主要包括:

5.0V基准电压源,高增益的误差放大器,电流比较器,RS触发器和欠压锁定电源电路。具有8脚封装的UC1845芯片各引脚功能如下:脚l为误差放大器输出,用于环路补偿;脚2是误差放大器的反相输入,通常通过一个电阻分压器连至开关电源输出,起电压反馈作用,调整输出的占空比,从而稳定输出电压;脚3为电流取样引脚,脉宽调制器使用此信息终止输出开关的导通,保护开关管,避免过流损坏;脚4用于定时,通过时间电阻RT,连接至参考输出引脚8以及时间电容CT连接至地,使振荡器频率和最大输出占空比可调,振荡频率为f=1.72(RTCT);脚5是控制电路和电源的公共地;脚6是输出驱动开关管的方波引脚。为图腾柱式输出,可直接驱动功率管MOSFET的栅极;脚7是控制集成电路的正电源(VCC)启动电压为8.4V,最大输出电流可以达到1A,适合驱动MOSFET以及适用于中小功率的DC/DC开关电源;脚8是内部基准电压源产生5.0V基准电压,作为UC1845内部电源,经衰减得2.5V电压作为比较放大器基准,并可作为向外电路输出5V/50mA的电源。UC1845还包括过压、欠压保护电路,当供电电源电压低于7.6V时,芯片停止工作。

UC1845具有很高的工作温度范围,可以在-65~150℃的范围内稳定的工作,可满足航天应用。

4、主体电路设计

主体电路以双管反激电路为总的系统框架,用UC1845芯片和相应的外围电路构成PWM控制器,反馈电路采用了磁隔离反馈,通过一个反馈控制量实现多路输出,在输出端配合应用低压差三端稳压器,可以提高各路输出负载稳定度。

4.1反馈控制电路设计

在常用的隔离反馈技术中,航天方面选用磁反馈较光耦反馈要更为可靠和稳定。相对于磁反馈而言,光耦反馈虽然更能达到所需的带宽,且电路简单、元件少,但在高温下光耦的传输比(CTR)会变小,会导致运放饱和,使输出电压的反馈控制失效。磁反馈比光耦反馈寿命长,受温度影响小。抗辐照能力强,故在航天方面选用磁反馈较光耦反馈要更为可靠和稳定。


图3 UC1845内部结构框图 本电路中控制电路围绕脉宽调制器UC1845进行设计,采用满足航天应用的磁隔离反馈技术。电路电压采样不是直接从输出端采样而是采用了磁隔离反馈技术。这种设计可以不借助启动隔离电路而实现离线式输出,线路简单,但带来的缺点是如果输出端不使用低压差三端稳压器负载调整率做不到很高,可以通过对变压器的设计和对变压器原边电感的计算使其工作于临界连续模式,可对输出电压负载调整率有一定改善;电流环采样信号与自持电压采样反馈信号和基准电压信号进行比较,得到误差控制信号进行比较得到PWM控制信号构成了电流型控制双环控制系统对开关功率管进行开关控制,实现闭环反馈控制。

UC1845启动电压在电路每次启动时是通过启动辅助供电电路降压启动,将PWM电路的启动工作电压稳定在10~12V范围内,使PWM电路安全可靠地启动并工作;在电源模块正常工作后,由于双管串联反激电路主变压器用于给PWM供电的自持绕组输出电压比降压启动输出电压略高,使得整流二极管被反向截止,该电路无输出功率,而PWM电路通过主变压器自持绕组输出电压长期供电,这样降低了电路功耗。

4.2双管反激式开关电源变压器设计

此双管反激式变压器的绕制采用“三明治”式绕法,如图4所示,即初级绕组先绕一半,再绕次级绕组,绕后再将初级绕组剩余的匝数绕完,将次级绕组包裹在里面,这样漏感最小。且使输出绕组和自持绕组并绕以实现最佳耦合效果。


图4 变压器绕制示意图

反激式开关电源变压器不同于其他双极型变压器,能量不仅要传递,还要在变压器电感中储存,并实现隔离作用,它实际作为一个变压器-扼流圈发挥作用。因此变压器设计也不同于其他电路,初级绕组电感值直接影响电路中的电压、电流波形。

关键参数设计:

由已知条件计算出总输出功率,确定磁芯截面积S.

和磁芯工作磁感应强度ΔB,选择合适的磁芯。

初级线圈的峰值电流:

式中,N1是最小的初级匝数;Vmin是最大的初级电流电压(单位:V);TON是开关管Q1的最大导通时间(单位:

μs);B是AC磁通密度变化的峰-峰值(单位:T),铁氧体典型值为200mT;Ae为磁芯中心柱的有效面积(单位:


5、实验结果

本文设计的适用于航天器用宽输入电压范围的双管串联反激、磁隔离反馈、高稳定三路输出DC-DC变换器,电源输入母线电压范围为60~120V(标称:100V),输出电压为5V/0.8A、±12V/0.3A,额定输出功率为11.2W,典型效率为75%以上,输出端使用低压差三端稳压器的情况下,输出电压负载稳定度优于±1%.

5.1开关电源输出实验结果

为了检验该开关电源的性能,对上述应用电路进行了性能测试。开关电源的电压调整率、负载调整率、纹波和效率如表l所示(表中UPP为电压峰峰值)。

从实验结果可知,在宽电压输入变化范围内输出电压稳定。 5.2电流采样环波形

电流环波形如图5所示。


图5 电流环波形

5.3主开关管漏-源波形

主开关管漏-源波形如图6所示。


图6 主开关管漏-源波形

6、结语

实验证明本文所设计的基于UC1845多路输出双管反激开关电源开关电源具有良好的工作性能,输出纹波小,反馈环节易于调整,保护动作迅速可靠。符合航天电源可靠性要求,特别适用于中小功率高压母线输入多路输出场合。

关键字:UC1845  多路输出  双管反激开关电源 编辑:探路者 引用地址:基于UC1845的多路输出双管反激开关电源方案

上一篇:两种典型的电池供电电路的设计方案
下一篇:USB电源适配器的电路保护方案

推荐阅读最新更新时间:2023-10-12 22:40

基于LM2679多路输出DC-DC变换器
    单片开关电源集成电路具有高集成度、高性能价格比、最简单外围电路、最佳性能指标等特点,能构成高效率无工频变压器的隔离式开关电源以及非隔离式开关电源。     许多电子设备需要提供多个相互独立的电源,如数码相机、个人数字助理、移动电话等。由于电子产品的高稳定性从而对其供电电源的稳定性也提出了更高的要求。同时为最大限度地利用电能,对转换效率也提出了更高的要求。这就需要能设计出多路输出、高效率、高稳定性的DC-DC变换器。文献中采用了单电感多输出DC-DC变换器,但对于多路大电流输出时就显得相当困难。对于大电流的多路输出本文仍采用各个DC-DC变换器独立工作。文中在以往多路DC-DC变换器的基础上进行了一定程度的拓展,通过在每个DC
[电源管理]
基于LM2679<font color='red'>多路</font><font color='red'>输出</font>DC-DC变换器
多路输出直流电压的AC/DC电源模块设计
   1 引言   随着科学技术的不断发展,对设备的状态的检测要求越来越高,从而要求测试设备能够提供高精度的准确测试。要实现高精度的准确测试,测试设备中的电压信号经过电路后要提供准确的电压值,这就对电源模块的准确度提出了很高的要求。   在某测试设备的研制过程中,为了完成测试任务,该设备需要多种直流电压信号,并且要求能够对部分电压信号的输出进行控制。通过分析发现,该测试设备提供给电源模块的空间很小,且三路直流电压输出通过外部高低电平进行控制,现有的电源模块无法满足这一需求;为了解决这一问题,设计了一种输出电压可控的直流电源模块,用来为测试设备提供±12 V、+5 V、+9 V和+6 V 直流电压信号输出,同时能够根据控制信
[电源管理]
<font color='red'>多路</font><font color='red'>输出</font>直流电压的AC/DC电源模块设计
多路输出单端反激式开关电源原理及设计
本文介绍了一种基于TOPSwith系列芯片设计的小功率多路输出AC/DC开关电源的原理及设计方法。 设计要求 本文设计的开关电源将作为智能仪表的电源,最大功率为10 W。为了减少PCB的数量和智能仪表的体积,要求电源尺寸尽量小并能将电源部分与仪表主控部分做在同一个PCB上。 考虑10W的功率以及小体积的因素,电路选用单端反激电路。单端反激电路的特点是:电路简单、体积小巧且成本低。单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。本电源设计成表面贴装的模块电源,其具体参数要求如
[电源管理]
<font color='red'>多路</font><font color='red'>输出</font>单端反激式开关电源原理及设计
改善多路输出电源负载交错性能
多路输出 电源 普遍采用针对一路输出进行闭环的PWM 控制 方式,而其他的辅助输出采用间接稳压方式。由于只对主输出进行闭环 控制 ,占空比的改变对辅助输出的负载影响较大,尤其是从轻载到满载变化时,交叉调节的性能变差(通常 5%)。如果对未闭环的辅助输出进行二次稳压(如线性稳压),则 电路 复杂,效率降低。对于两路输出DC/DC模块,大多采用正负电压联合采样技术,但对于负载不对称的用电环境下交叉调节性能变差。为了改善负载交错性能,国外有些公司只研发单路输出模块,然后由用户对模块进行组合,实现多路输出稳压,这样也可提高效率。 多年来,国外对多路输出电源进行了较深入的研究。但是,在文献中进行数学模型建立,数学推导、分析的较多,其中
[电源管理]
输出功率20W的多路输出DVD电源电路
输出功率20W的多路输出DVD电源电路 图1中采用TOP245P的设计非常适合于DVD及机顶盒的应用。P封装省去了散热器,且在50 °C的环境温度下能提供20 W/峰值25 W的输出功率。利用M引脚的功能通过外部电路对限流点进行编程以及遥控开/关机(禁止),可以在轻载和空载情况下实现电流模式操作,从而降低了开关频率。电流模式控制由元件R2、Q3、R3、C16、R4 和 R6来实现。 大于2 mA(U1的供电电流)的反馈电流对Q3进行正向偏置并上拉R6,这样就调整了M引脚的拉出电流,允许输出电压反馈环路对初级开关电流加以控制。 电阻R6设定最大限流点,而R2和C16提供了斜波补偿。电阻R4确保电流不会流进M引
[电源管理]
<font color='red'>输出</font>功率20W的<font color='red'>多路</font><font color='red'>输出</font>DVD电源电路
一种多路输出开关电源的设计以及实际应用原则
对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成: +3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V (包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间
[电源管理]
一种<font color='red'>多路</font><font color='red'>输出</font>开关电源的设计以及实际应用原则
C51单片机 通过定时器模拟输出多路PWM
前言 本博文基于STC89C52RC和keil5 C51开发; 如有不做之处还请多多指教; 需要用到的东西 利用定时器0完成(定时器1也一样); 利用P1.0~P1.3完成4路PWM的输出(不同的占空比); 代码如下: #include STC89C5xRC.H #define ENABLE 1 #define DISENABLE 0 typedef unsigned int uint16; typedef unsigned char uchar8; sbit P1_0 = P1^0; sbit P1_1 = P1^1; sbit P1_2 = P1^2; sbit P1_3 = P1^3; /* 占空比的时间
[单片机]
多路输出正激式变换器耦合滤波电感的设计
    摘要: 分析了具有耦合滤波电感的多输出正激式开关电源电路,对比了有耦合和无耦合滤波电感对电路参数的影响,介绍了耦合滤波电感的设计方法。     关键词: 多路输出  正激式  耦合滤波电感  互感  漏感  开关纹波 1 引言 近年来高频开关电源在电子产品中得到广泛应用。正激式DC/DC变换器以其输出纹波小、对开关管的要求较低等优点而适合于低压、大电流、功率较大的场合。但正激变换器对输出电感的设计有较高要求,特别在多路输出的情况。 本文分析对比正激变换器多路输出滤波电感采用独立方式和耦合方式的不同特点,讨论了耦合电感的设计方法,给出了一个设计实例,并给出仿真及试验结果。 2
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved