利用可编程逻辑器件实现灵活的电源管理

最新更新时间:2014-06-15来源: 互联网关键字:Lattice  FPGA  电源管理 手机看文章 扫描二维码
随时随地手机看文章

  电源管理一般是指涉及电路板供电方面的相关问题。该相关问题包含:

  •选择各种DC-DC转换器为电路板供电

  •电源供应排序/追踪

  •电压监测

  •上述全部

  在本文中,电源管理被简单定义为:对电路板上的所有电源进行管理(包括DC-DC转换器及LDO等)。电源管理功能包含:

  •管理电路板上DC-DC控制器——例如热插拔、缓启动、排序、追踪、裕度和微调。

  •产生所有电源供应相关状态和控制逻辑讯号——例如重置讯号产生、电源错误指示(监测)和电压管理。图1展示了一个采用CPU或微处理器电路板的典型电源管理功能。

  图1:电路板上的典型电源管理功能。

  热插拔/缓启动控制功能可用来限制突波电流以减少供应电源的启动负载。对插入带电背板的电路板来说,这是个很重要的功能。

  电源供应排序和追踪功能可在达到电路板上所有组件对顺序的需求下,控制多个电源的开/关。

  所有供应电压都被错误(过压/欠压)监测,以向处理器就即将发生的电源供应错误进行预警。该功能也被归类为监督功能。

  当电源启动时,重置产生功能提供处理器一个可靠的启动电压。有些处理器会要求重置讯号在其内部所有电源供应都稳定后,仍能运作一段时间,这也被称作重置脉冲展延。重置产生器的功能是当电源供应发生错误情况时,使处理器保持在重置模式,以防止电路板上闪存无意中被破坏的情况。

  传统电源管理方案的限制

  传统电路板上的任何电源管理功能都是由个别单功能IC来执行的。不同的供应电压组合有不同的IC型号可使用。因此,市面上就有来自不同厂商数以万计针对多重电源供应管理需求的单功能IC。

  例如,若要选择一款重置产生器IC型号,必须提供以下信息:

  •该重置产生器IC需监测的供应电压

  •供应电压组合(3.3、2.5、1.2或 3.3、2.5、1.8等)

  •错误侦测电压(3.3V-5%、3.3V-10%等)

  •准确性(3%、2%、1.5%等)

  •重置附加电容的重置脉冲扩展功能

  •手动重置输入

  为应付所有可能产生的变化,一家厂商可能就有几百个重置产生器IC型号。若工程师在设计过程中(很可能)需要增加另一个电压进行监测,必须选择一个额外且不同型号的IC。类似地,许多单功能IC的型号也会随着些微功能的不同而有所差异,这些功能包括热插拔控制器、电源供应排序器和电压监测/检测器等。多重电路板系统中的任何电路板均需要不同组的单功能IC,材料成本也因而增加。

  日益增加的电路板复杂性

  若单功能电源管理IC曾经是可管理的,那也已经是过去式了。大多数典型的电路板目前都使用若干多重电压组件,每个组件都有电源排序需求。具有更小型晶体管的组件需要带有增强电流的较低电源供应电压。设计者常常被要求利用每个多重电压IC的负载点电源,因此,电路板上的电源供应数就增加了。随着电源供应路径的增加以及对多重排序管理的需求,电源管理也变得更加复杂。

  随着电路板变得更复杂,传统的电源管理方案便显得难以招架。目前,利用传统单功能IC执行电源管理的设计师要不是得牺牲监测某些电源供应,不然就得为个别电源管理功能选择多个单功能组件。这两种方法都不让人满意。

  电路板空间增加却降低了可靠性

  单功能IC数的增加以及相关的互连不仅使电路板面积加大,从统计学的角度来看,还降低了电路板的可靠性。举例来说,不断增加的组装错误可能会导致不可预知(必然是不好)的结果。

  第二货源及设计妥协方案

  若单功能组件是从不同供货商选购而来,即使发生缺少某一组件,都将增加生产延误风险,于是第二货源就此产生。然而,第二货源降低了设计工程师的零件可用性,迫使设计师不得不就电路板的错误覆盖范围做出折衷。

  系统成本增加

  组装和测试费用与系统中所用的组件数成正比,而组件单位成本与购买数量成反比。由于许多组件是为特定系统需求而提供,但用来建构系统的每一种类型组件数量却都很少,因此,整体系统成本就随之增加了。

  举例来说,假设一个系统有10块电路板,以每年制造1,000个系统的速度进行,若每块电路板的电源管理都采用一种单功能IC,那么很可能需要10种不同的单功能IC来完成这个系统设计,这些单功能IC的年产量也许只有1,000颗,而1,000颗IC的单价当然高于10,000颗,所以,与采用同一种多功能单芯片电源管理方案相较——即所有电路板都能使用相同的IC,单功能IC电源管理系统所需成本必然更高。

  用多个单功能IC组件来执行传统电源管理方案令人联想到1980年代时,数字设计师利用TTL闸极来执行逻辑功能。随着电路板复杂性的增加,设计师被迫不是得用固定功能的ASIC,就是得增加电路板使用的TTL组件数目。但不意外的是,系统设计所使用的TTL组件数目因此急速增加。

  可编成逻辑组件(PLD)的出现使设计师可在电路板特定的单位面积内执行更多功能,也同时缩短了产品上市时间。系统中的零件数目减少了,也降低了整体系统成本。相同的PLD组件可用在多种设计里,也减少了系统使用组件的数目。公司能在不牺牲任何电路板所需功能的前提下,对少量PLD组件进行标准化处理。

  管理少量的PLD比管理大量的TTL闸极要容易的多。相同的PLD可被用于多个电路板设计,因而减少甚至不再需要第二货源。设计师可在将组件放置到电路板上以前,用软件仿真设计,因而增加了第一次就设计成功的可能性。

  如今,利用单功能电源管理IC就如同过去采用TTL闸极一样麻烦,当今复杂的电路板设计需要’电源管理PLD’。的确,这个电源管理PLD根本就是电路板设计的必要组件。

  可编程电源管理方案

  图2展示了一个采用单一可编程电源管理组件的典型电路板电源管理实例。可编程电源管理组件需要可编程模拟和数字单元以促进多个传统单功能电源管理组件的整合。设计师可配置可编程模拟单元以监测一个电压组合,而不必依靠使用一个专门配置、厂商编程的单功能组件。

图2:用可编程电源管理组件取代多个单功能IC。

  电源管理组件的可编程数字单元需要用来定义特定电路板逻辑;该逻辑结合了从可编程电源监测功能得来的结果;以执行诸如重置产生、电源供应错误中断产生、以及各电源排序等功能。一个可编程的软件设计方法使电源管理组件能提供广泛的电源管理功能。

  利用可编程电源管理组件

  以Lattice Semiconductor的Power Manager II组件为例,该组件是一款可编程电源管理组件。Power Manager II整合了若干数字和模拟单元以支持多个单功能电源管理组件的整合。图3是Power Manager II组件的图标。

  图3:Power Manager II系列组件示意图。

  图3所示为Power1014A组件,它是Power Manager II系列中的一款产品。Power1014A可监测10个电源供应路径、具有14个电源输出,可执行所有电源管理功能。

  Power1014A利用20个内建可编程临界值精密比较器监测多达10组电源供应的过压/欠压状态,一般监测精密度是0.3%。数字监测输入适用于连接诸如手动重置、电源供应和切断等数字讯号。

  Power1014A有4个定时器,在122个步进中,可编程范围都是从32us到2s。这些定时器可用来控制排序延迟、重置脉冲展延以及用作看门狗定时器。

  12个开汲极输出可由芯片上的24个宏单元CPLD驱动,使DC-DC转换器能排序、产生一个CPU重置讯号,也能驱动一个P信道MOSFET来执行热插拔功能。

  Power1014A还有两个高压(达12V)MOSFET驱动器透过N信道MOSFET达成电源供应、或执行缓启动功能以及执行负极电源供应路径上的热插拔功能。

  透过I2C总线,任何微处理器借助内建的10位模拟数字转换器都可测量任何电源供应电压。该I2C总线还能用于监测电源供应比较器、输入和输出状态。

  可编程特性使电源管理标准化

  透过简单地再配置可编程组件,设计师可借助一个可编程电源管理组件执行全部特定电路板电源管理功能。相同的可编程组件可被用于多个电路板而不是采用多个单功能IC。因此,设计师可在整个设计内对单一可编程电源管理组件进行标准化。

  对电源管理功能进行标准化

  在多个电路板上利用同一个整合了电源管理功能的单一可编程电源管理组件的好处如下:

  电路板面积缩小、可靠性增加:将多个单功能IC整合进一个组件的主要好处是减少了电路板面积。减少的零件数及相关布线缩小了电路板面积并降低了成本。从统计学角度看,减少了的零件数还增加了电路板的可靠性。

  满足复杂电源管理需求的能力:目前电路板上所用的电源供应数不断在增加,此外,监测和控制功能的复杂性也在增加。因可编程电源管理组件整合了更多的电源监测输入(与单功能IC相比)以及可编程数字逻辑单元,所以这些组件较适合执行复杂的电源管理功能。另外,可编程的方式具有灵活性,能够快速适应以满足不断改变的规格要求。

  不再需要第二货源:一般来说,第二货源是为了避免因无法取得组件造成生产延误而采取的防范措施。这个需求因为一个典型系统实际上需来自不同供货商的多个小型单功能组件而被放大。藉由在所有电路板和项目中对单一可编程电源管理组件进行标准化,能将耗时和第二货源耗尽等问题彻底排除或降低。

  降低整体系统成本:可编程电源管理组件价格比个别单功能IC的总价来的便宜。除此之外,因采购数量增加能加大折扣,对系统内的多重电路板实施标准化电源管理能进一步降低成本。

  可用软件执行电源管理功能:运用软件在可编程电源管理组件中进行设计。一般而言,利用在线仿真器,软件设计工具还执行电源管理算法的验证。由于电源管理设计在投板前就进行了完全验证,所以第一次就能设计成功的机会很高,进一步加速了产品上市时间。

  本文小结

  目前电路板上使用的电源数正持续增加,甚至连电源管理算法也变得更加复杂。然而传统过时的电源管理方案仍常常被拿来用于高性能的电源管理需求,因而使电路板设计变得低效、昂贵、还常常需要性能折衷。

  本文针对一些复杂的电源管理问题提出了一个设计方案:采用可编程、混合讯号电源管理组件。设计师可对’电源管理PLD’进行标准化并在整个系统电路板上采用该组件,因而降低了成本、增加了可靠性并加快了产品上市时间。

关键字:Lattice  FPGA  电源管理 编辑:探路者 引用地址:利用可编程逻辑器件实现灵活的电源管理

上一篇:TDA7482数字功放电路图
下一篇:集成电路技术汇总(一):好坏判别方法

推荐阅读最新更新时间:2023-10-12 22:41

基于FPGA的直接数字频率合成技术设计
  直接数字频率合成(DirectDigital FraquencySyn-thesis即DDFS,一般简称DDS)是从相位概念出发直接合成所需波形的一种新的频率合成技术。它在相对带宽、频率转换时间、相位连续性、正交输出、高分辨率以及集成化等一系列性能指标方面已远远超过了传统频率合成技术。当累加器的N很大时,最低输出频率可达Hz、mHz甚至μHz。也就是说:DDS的最低合成频率接近于零频。如果fc为50MHz, 那么当N为48位时,其分辨率可达179nHz。转换时间最快可达10ns的量级,这都是传统频率合成所不能比拟的。但它的不足之处是最高工作频率会受限、噪声和杂波不够理想。   本设计采用ALTERA公司的FPGA芯片
[嵌入式]
基于<font color='red'>FPGA</font>的直接数字频率合成技术设计
ACTEL推出第三代FPGA编程工具
Silicon Sculptor 3 的数据吞吐量大,并具备更高的并行编程能力, 可从先前版本进行无缝升级 Actel 公司宣布推出 Silicon Sculptor 3 现场可编程门阵列 (FPGA) 编程工具,提供庞大的数据吞吐量,且使用容易,并同时能降低整体的拥有成本。 Silicon Sculptor 3 包含一个高速 USB 2.0 接口,可让用户在一台 PC 上连接多达 12 个编程器。此外, Silicon Sculptor 3 与 Silicon Sculptor II 的适配模块兼容,因此能保护客户已有的投资,可从先前的工具版本无缝升级
[新品]
FPGA迈向通用平台之路?
近来对于电子行业的评论不再像几年前那么乐观了,通信领域和消费电子领域这两大驱动力市场的表现不尽如意,市场份额庞大但却竞争惨烈,利润走低。“展望整个半导体市场,惟有FPGA是黑暗中的亮点。”此话说得有些夸张,半导体市场的黑暗期远不是如此,现在的情形充其量只是低迷。不过这句话确也有些道理,因为这两年以来,我们可以明显地看到,FPGA一直稳步地遵循着摩尔定律,价格和功耗在不断降低的同时性能却越来越高。 FPGA拥有灵活的可编程特性和强大的并行处理能力,但是相应地,体积庞大价格昂贵也是其软肋。不过现在我们再仔细看看Xilinx、Altera等FPGA厂商的产品线以及他们的客户列表,我们不难发现,FPGA已经由原来的电信等领域开始逐渐
[应用]
基于FPGA的生物芯片扫描仪的位置检测
  生物芯片是20世纪末随“人类基因组计划”的研究和发展而产生的一项高新技术,是人们高效地大规模获取生物信息的有效手段。目前大部分生物芯片采用荧光染料标记待测样品分子。生物芯片扫描仪用激光激发荧光染料,通过对激发点的成像,检测一个点;结合生物芯片X-Y二维精密扫描台上移动,实现对整片的扫描。 X-Y二维扫描台的位置检测精度直接影响着扫描分辨率——生物芯片扫描仪性能的关键参数。基于传统的数字电路的生物芯片扫描仪中X-Y二维扫描台的位置检测电路存在计数误差和误清零问题,本文以基于FPGA设计的位置检测电路来解决。以FPGA芯片代替传统的数字电路,不仅可提高系统的集成度和可靠性,而且FPGA最高工作频率已超过200MHz,通过硬件描述语
[嵌入式]
基于<font color='red'>FPGA</font>的生物芯片扫描仪的位置检测
基于FPGA短波差分跳频信号发生器的设计与实现
0 引言 短波通信具有通信距离远、机动灵活、成本低廉等优点,而且是一种抗毁性较强的通信方式,因此在多种领域得到了广泛的应用。随着跳频和自适应等新技术的发展,短波通信的性能也得到进一步的提高。但由于短波信道的特点,一方面,其存在多普勒频移和多径效应,严重影响短波通信的系统性能,特别是对于短波数据传输系统,往往达不到较高传输速率;另一方面,其频率资源有限,易受干扰和窃听,再加上短波通信所使用的媒介,造成短波通信是一个时变、衰落信道,保持良好的通信效果有较高难度。美国Sanders公司推出一种相关跳频电台采用的差分跳频技术在短波信道上实现了跳速为5000hop/s,传输速率最低为2400bps,最高可达19200bps的指标,这在传
[嵌入式]
基于<font color='red'>FPGA</font>短波差分跳频信号发生器的设计与实现
技术文章—2D NoC可实现FPGA内部超高带宽逻辑互连
Achronix 最新基于台积电(TSMC)的7nm FinFET工艺的Speedster7t FPGA器件包含了革命性的新型二维片上网络(2D NoC)。2D NoC如同在FPGA可编程逻辑结构上运行的高速公路网络一样,为FPGA外部高速接口和内部可编程逻辑的数据传输提供了超高带宽(~27Tbps)。 图1 Speedster 7t FPGA结构图 NoC使用一系列高速的行和列网络通路在整个FPGA内部分发数据,从而在整个FPGA结构中以水平和垂直方式分发数据流量。NoC中的每一行或每一列都有两个256位的、单向的、行业标准的AXI通道,可以在每个方向上以512Gbps(256bit x 2GHz)的传输速率运行。
[嵌入式]
技术文章—2D NoC可实现<font color='red'>FPGA</font>内部超高带宽逻辑互连
AC-Link数字音频VHDL编/解码的FPGA设计
引言 数字音频处理是指为真实再现声音的逼真效果而对音频进行的编解码处理技术,它是宽带网络多媒体、移动多媒体通信的关键技术.Audio Codec′97(音频数字信号编/解码器)是其中一种用于声音录放的技术标准,简称AC′97. AC′97采用双集成结构,即Digital Controller(数字信号控制器)和Audio Codec(音频编解码),使模/数转换器ADC和数?模转换器DAC转换模块独立,尽可能降低EMI(电磁干扰)的影响。 利用FPGA,可以实现复杂的逻辑控制,对大量音频数据做并行处理.FPGA提供可编程时钟发生器,满足音视频处理要求的时钟范围宽、相位抖动(Phase Jitter)小的要求,并为系统提供可控延时
[嵌入式]
Silicon Witchery发布集成Nordic SoC与Lattice FPGA的开发板
瑞典嵌入式模块供应商 Silicon Witchery 发布了一款非常紧凑的模块S1,旨在将 Nordic Semi nRF52840 连接到空间最受限的项目中,该模块还集成了 Lattice iCE40 现场可编程门阵列 (FPGA) . “专为最小边缘设备上的高效人工智能而设计。”Silicon Witchery 声称其结合了微处理和 FPGA 设备。 “S1 旨在简化您的设计并为您节省数月的 RF HDI 布局。S1 是四个关键组件的结合,这对于开发微型电池供电产品至关重要。它满足应用要求的苛刻算法,同时消耗尽可能少的功耗。” 尽管 S1 模块尺寸仅为 11×6 毫米(约 0.43×0.24 英寸),但它包含了四个
[嵌入式]
Silicon Witchery发布集成Nordic SoC与<font color='red'>Lattice</font> <font color='red'>FPGA</font>的开发板
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved