小器件大乾坤 电容寿命的计算方法

最新更新时间:2014-07-27来源: 电源网关键字:小器件  大乾坤  电容寿命 手机看文章 扫描二维码
随时随地手机看文章

电容就是我们通常所说的电容器,其作用就是作为容纳电的容器。电容也是使用量比较大元器件之一,经常出现在耦合、滤波、隔直通交等电路设计当中。由于应用面积广泛,所以电容的寿命问题就很有可能决定产品的寿命。本文就以电容的寿命为出发点,为大家展示了一种电容寿命的计算方法。

Lx=L0(或者LR)*KT*KR1(或者KR2)*Kv

Lx:电容预期寿命;

L0/LR:电容加速寿命,可以查阅电容规格书.(如果资料提供在最高温度下的数据(如2000小时),则用L0,后面对应KR1;如果资料提供最高温度、施加可允许最大文波电流下的数据,则用LR,后面对应KR2)

KT:环境温度影响系数(每升高10度,寿命降低一半)

KT等于2的(T0-Tx)/10次方(公式不好编辑,这样写大家应该能明白)

T0:电容最高工作温度(85或105)

Tx:电容实际工作温度

KR1/KR2:纹波电流影响系数.

KR1与L0对应,等于2的-T/5次方.T:纹波电流所引起的电容内部温升,KR2与LR对应,等于2的(Tm-T)/5次方,Tm:施加最大电容允许文波电流所引起的电容内部温升(可以查到);T:实际纹波电流所引起的电容内部温升。

Kv:工作电压影响系数(对大多数电容,实际工作电压为额定电压的0.8,则Kv=1)这只是一种计算电容寿命的方法,实际上电容的寿命是根据不同的电容公司给出的计算公式来决定的,并不能一概而论。电容的寿命和频率的关系方面,一般来说会有一个频率系数,会与应用的电容条件有关。

比如高频的电容在100KHz的时候频率系数为1,BULK电容在120Hz的时候频率系数为。这些内容一般会在DATASHEET上显示出来。

其实基本上都是根据各个公司给的DATASHEET和计算公式代数值,频率系数乘温度系数再乘以DATASHEET上的额定RIPPLE CURREN =电容实际的RIPPLR CURRENT。可上边RUBYCON里面讲的计算寿命时不能乘温度系数,只能乘频率系数.实际计算电容寿命时候是不能乘以温度系数的,因为温度系数定义时是按照和最高温度,额定文波电流时的寿命相等来定义的.但计算文波电流应力时可以乘以温度系数。

总的来说,电容的寿命计算公式其实根据厂商变化的。不同的产品会有不同的计算方法和公式,采用相同的计算方法去计算两家不同的电容产品得出的结论很有可能不尽相同,所以采用stress测试才是最准确的测量方法。

关键字:小器件  大乾坤  电容寿命 编辑:探路者 引用地址:小器件大乾坤 电容寿命的计算方法

上一篇:反激开关电源变压器设计有方
下一篇:安全是第一生产力 开关电源测试怎么做

推荐阅读最新更新时间:2023-10-12 22:43

电子元器件科普知识:功率MOSFET的基础知识
什么是功率MOSFET 我们都懂得如何利用二极管来实现开关,但是,我们只能对其进行开关操作,而不能逐渐控制信号流。此外, 二极管 作为开关取决于信号流的方向;我们不能对其编程以通过或屏蔽一个信号。对于诸如“流控制”或可编程开关之类的应用,我们需要一种三端器件和双极型 三极管 。我们都听说过Bardeen & Brattain,是他们偶然之间发明了三极管,就像许多其它伟大的发现一样。 结构上,它由两个背靠背的结实现(这不是一笔大交易,早在Bardeen之前,我们可能就是采用相同的结构实现了共阴极),但是,在功能上它是完全不同的器件,就像一个控制发射极电流流动的“龙头”—操作龙头的“手”就是基极电流。双极型三极管因此就是电流受控的
[电源管理]
电子元<font color='red'>器件</font>科普<font color='red'>小</font>知识:功率MOSFET的基础知识
Vishay推出寿命更长的螺丝端子电容
器件可供设计师在480V系统中重用三相380V设计并将光伏逆变器升级至1000V输入 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,其Vishay BCcomponents 500 PGP-ST系列 螺丝端子铝电容器最大额定电压扩展至500 V,同时+85 °C条件下的使用寿命延长两倍以上达到5000小时。 500 PGP-ST系列器件是采用非固态电解液的极化铝电解电容器,特别适合用作额定20 kW以上功率转换电子设备中的直流母线电容器—包括大型电机驱动、UPS系统以及光伏逆变器。其500 V额定电压提高了这些应用的电压裕量,同时可在480 V系统中重用三相380
[电源管理]
Vishay推出<font color='red'>寿命</font>更长的螺丝端子<font color='red'>电容</font>器
利用超级电容延长交通运输和移动应用中的电池寿命
电池寿命逐渐成为系统性能和可靠性的最关键因素之一,而超级电容的引入将在两个主要应用领域帮助延长电池寿命。首先,它们能够戏剧性地降低卡车、轿车、轮船和电动发电机等车辆中的电池更换成本。其次,它们能够将智能手机和平板电脑等移动设备的运行时间延长400%。 超级电容具有无限次的再充电能力和很高的能量密度,可以在宽温度范围内甚至电池发生故障的情况下为汽车、重型运输车辆、船舶和牵引机车提供有保证的发动机启动功能。 在移动电子系统中,超级电容能够在多种不同的应用使用场合控制峰值电流。由于能够更好地控制放电,电池能够更长时间地保持它们的峰值电能,并延长设备的运行时间。 研究这两大应用领域的市场需求展示了增加超级电容的好处,但是方式完全不同。
[电源管理]
利用超级<font color='red'>电容</font>延长交通运输和移动应用中的电池<font color='red'>寿命</font>
针对纳米器件的脉冲I-V测试技巧
在对纳米器件进行电流-电压(I-V)脉冲特征分析时通常需要测量非常小的电压或电流,因为其中需要分别加载很小的电流或电压去控制功耗或者减少焦耳热效应。这里,低电平测量技术不仅对于器件的I-V特征分析而且对于高电导率材料的电阻测量都非常重要。利于研究人员和电子行业测试工程师而言,这一功耗限制对当前的器件与材料以及今后器件的特征分析提出了巨大的挑战。 与微米级元件与材料的I-V曲线生成不同的是,对纳米材料与器件的测量需要特殊的方法和技巧。I-V直流特征分析通常采用两点式电气测量技术来实现。这种方法的问题是如果提供电流源并测量电压,那么所测得的电压不仅包括器件上的压降,而且包括测试引线和接触点上的压降。如果目标是测量某个器件的电阻,
[测试测量]
针对纳米<font color='red'>器件</font>的脉冲I-V测试<font color='red'>小</font>技巧
TDK退出更长寿命的功率因数校正 (PFC) 电容
TDK株式会社推出DeltaCap™X Black Premium电容器,这是一款专为功率因数校正 (PFC) 而开发的爱普科斯 (EPCOS) MKD新系列电容器。额定电压范围从440 V AC至850 V AC,内部采用三角形连接设计,非常适合低压功率因数校正和谐波滤波应用。单体电容器的容值范围从3 x51μF至3 x165μF,输出功率范围从20 kvar至44 kvar(50/60 Hz)。 新系列电容器采用特殊黑色涂层,散热性能更佳,可在温度等级-40 / D的条件下,其使用寿命可以长达300,000小时。凭借超坚固的结构,B32305A *系列的电容器可承受的最大浪涌电流达500 x IR,工作环境温
[电源管理]
TDK退出更长<font color='red'>寿命</font>的功率因数校正 (PFC) <font color='red'>电容</font>器
电容应用实践:从设计选型到寿命分析
 开关电源的寿命很大程度受到电解电容的制约,而电解电容的寿命取决于其内核温升。本文从纹波电流计算、纹波电流实测、电解电容选型、温度测试方法、寿命估算等方面,对电解电容作了全面的分析。下面就随电源管理小班一起来了解一下相关内容吧。 电容应用实践:从设计选型到寿命分析 纹波电流产生的热量引起电容的内部温升,加速电解液的蒸发,当容值下降20%或损耗角增大为初始值的2~3倍时,预示着电解电容寿命的终结。通过检查电容器上的纹波电流,可预测电容器的寿命。本文以连续工作模式的反激变换器输出电容分析为例,重点从纹波电流角度全面分析电解电容的选型与寿命。 1、纹波电流计算 假设已知连续工作模式的反激变换器,其输出电流Io为1.25A,纹波
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved