基于EDA技术的航空电源逆变控制电路设计

最新更新时间:2014-07-28来源: 互联网关键字:航空电源  逆变控制  脉宽调制 手机看文章 扫描二维码
随时随地手机看文章

当前航空电源型号各异,种类庞杂,应该说综合性能还不够高。特别是随着航空器的不断发展,其对电源保障需求面临诸多新挑战。因此,研制先进电源保障设备,提高其通用性、综合性,可为现有各类航空器提供通用配套保障,不但能够适应航空器换代的需要,提高其实用性,而且可以压缩保障装备设备的数量和规模。研究事例为航空逆变电源,其特性是负载三相平衡的前提下,能够保证三相电压的幅值、相位始终处于平衡。构成的组合式三相全桥逆变电路见图1.本文引入了技术现代电子设计自动化技术(EDA),综合运用非常超高速集成电路硬件描述语言设计语言(VHDL)和可编程逻辑电路(PLD)元器件进行控制逻辑的设计与实现,对组合式三相逆变电路进行状态控制,获得要求的输出电压及波形。

1正弦脉宽调制方案的设计与计算

脉宽调制(Pulse-width Modulation,PWM)是在固定频率下,设计一定规律的脉宽系列,控制逆变器的开关器件的导通及截止状态,在输出端获取所需航空电源,满足设计的品质要求。

1.1等效面积法的数学模型

采纳等效面积正弦波脉宽调制(SPWM)生成法,具有输出波形谐波量小,波形接近正弦波形而且算法简单等优势特点。

先把理想正弦波划分为若干等份,如图2所示,某一等份的弧线与时间轴形成的面积等同于某矩形脉宽,前提是矩形脉宽中点与弧线投影的中心点在时间轴上重合,且两者面积相等,划分的等份数量越大,整个矩形脉冲系列就越近似于设计所需的理想正弦波形,其中,矩形脉宽就是用于控制逆变器上元器件的导通、截止状态。


图1组合式逆变电路示意图

如第k个脉冲,其的正弦波形弧线垂直向下与时间轴形成的面积为SAk,与其等效的脉冲矩形面积为SRk,易得到公式:

式中:调制参数为M;理想正弦波被划分为N等份。

每等份的时间宽度为θk,每等份的时间轴中点为αmk,等效面积的矩形宽度(相当于导通时间)为θpk,等效面积的矩形前后两端剩余时间(相当于截止时间)宽度为θnk,计算公式分别是:



1.2设计计算及数据生成

设定一定数值后,通过上述等式和公式,利用数学工具Matlab软件进行数值计算,生成表1和脉冲数据。

表1脉冲系列数据


图2等效面积算法SPWM生成模型

2软、硬件的设计与实现

2.1软件设计与实现

控制电路的硬件采用PLD元器件,并基于VHDL语言进行设计达成所需的逻辑功能,做到数字化控制。

整个系统主要由开关模块M_ONOFF、可控时钟分频器M_CLOCK、反馈调制模块M_MANDP、脉冲宽度数值存储器A、B、C:PW_ROM和脉冲发生器M_PWM等模块按一定逻辑对接而成,如图3所示形成了逆变控制逻辑电路的顶层设计文件M_TOP_SPWM,可实现等效面积正弦波脉宽调制法设计所需的脉冲波形系列,用来控制开关器件IGBT的导通和截止状态。2.2逻辑电路的硬件编译与实现


逆变控制电路的顶层设计文件用VHDL语言编程描述成逻辑电路后,采用Max+PlusⅡ(Multiple ArrayMatriX Programmable Logic User SystemⅡ)为本实验的EDA设计软件,并在EDA实验开发系统(GW-GK系统)上完成仿真和硬件测试实验。首先选用ALTERA公司的EP1K50TC144-3芯片,然后如图4,图5所示对此芯片管脚进行输入输出定义、编译,通过ByteBlasterMV并行下载,打印机接口与目标板相连,完成芯片逻辑功能配置,最终在硬件上实现了控制系统电路逻辑功能。

3仿真结论与开发前景

顶层设计文件编译后进行实验仿真,结果如图6所示,其中脉冲系统S_A12、S_A34是单相全桥逆变器A的控制信号,S_B12、S_B34是单相全桥逆变器B的控制信号,S_C12、S_C34是单相全桥逆变器C的控制信号,显而易见三个单相全桥逆变器控制脉冲信号S_A、B、C生成相隔1/3周期,而且非常精确,完全满足实验设计所需的品质要求。


图3系统对接图


图4芯片引脚的锁定分配图


图5连接下载

采用VHDL硬件描述语言对硬件的功能进行编程,在实验室就能设计获得所需的控制逻辑电路,特点明显,具有传统实验方法根本无法实现的静态可重复编程和动态在系统重构的优势,这大大提升了航空电源控制系统设计的灵活性,实现了硬件的“软件化”。用可编程逻辑器件PLD芯片不但压缩了设计实验周期,减少误差,提高设计系统的精确度(如图6所示,可控制到3 ms以下),而且可以高度缩小控制系统的硬件规模,提高了集成度,降低了开发成本,有利于当前航空事业突飞猛进对电源的多样化需求开发,前景广阔。


图6实验功能仿真效果图
关键字:航空电源  逆变控制  脉宽调制 编辑:探路者 引用地址:基于EDA技术的航空电源逆变控制电路设计

上一篇:基于TPS65105 的TFT-LCD电源设计方案
下一篇:功率因数校正器(PFC)在电源应用中的重要作用

推荐阅读最新更新时间:2023-10-12 22:43

CO2焊接逆变电源及其智能模糊控制
摘要:在分析CO2焊接过程控制特点的基础上,设计了恒流型IGBT逆变电源。在不同的熔滴过渡形式下,提出了弧长和短路频率智能模糊控制方案。试验证明,采用该技术有助于克服CO2焊接存在的不足,可以更好地实现电弧状态的控制。 关键词:逆变电源模糊控制CO2焊接 An Inverter- type Power Supply and Fuzzy Control for CO2 Arc Welding Abstract:Based on the foundation of analysis of CO2 welding process,a constant current (CC)IGBT inverter is devel
[电源管理]
CO2焊接<font color='red'>逆变</font><font color='red'>电源</font>及其智能模糊<font color='red'>控制</font>
SA828在航空电源中的应用
摘要:阐述了以SA828为核心组成的航空逆变电源的设计,通过对SA828生成SPWM信号的原理进行分析,详细讨论了硬件和软件的设计方法。功率为4kW的样机证明,效果良好。 关键词:逆变电源;集成电路SA828;正弦脉宽调制   1 引言 航空电源一般都是将直流或交流(380V/50Hz)电逆变成交流115V/400Hz电源,以供雷达、飞机等设备使用。完成该变换的方法有多种,但由于其生成SPWM信号较复杂,造成航空逆变电源的整体性能下降,并易出现变压器偏磁和输出谐波含量大的缺陷。而采用大规模数字集成芯片SA828,通过单片机与SA828的接口生成SPWM信号,则不需改变外围电路就能重新设置载波频率、调制频
[电源管理]
SA828在<font color='red'>航空</font><font color='red'>电源</font>中的应用
什么是PWM(脉宽调制)
PWM(Pulse Width Modulation)——脉宽调制,是一种开关式稳压电源应用,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,PWM 码是一种脉宽调制码,它的组成为9MS 高电平和4MS 低电平引导脉冲,16 位系统识别码,8 位数据正码和8 位数据反码。我要解的就数据码。一个PWM码的0是由一个0.58ms的低电平和一个0.58ms的高电平组成,1 是由一个0.58ms 的低电平地和一个1.58ms 的高电平组成。 pwm解码原理: 首先通过延时来丢
[模拟电子]
正弦逆变控制软件的设计
  目前,正弦逆变器的控制通常采用模拟电路或数字电路实现。由于硬件的固有缺点和不能实施先进的控制策略,致使逆变器的性能不能极大的提高。随着高速微处理器的问世,特别是具有高速运算、处理和控制能力的DSP的出现,使得对正弦逆变器采用新的控制方法成为可能。文中将重点介绍采用DSP实现正弦逆变器控制的方法。   1 全桥正弦逆变器   示出单相全桥逆变器的原理电路及波形。其中H桥和滤波电路完成直流到交流的变换,滤去谐波,获得交流电;控制电路完成对H桥中开关管的控制,并使输出交流电的电压、频率和波形稳定。   SPWM的生成原理及波形如图2所示。由于采用正弦波调制波(Ussintωst)与三角波载波(幅值为Uc的正三角波,频
[电源管理]
正弦<font color='red'>逆变</font>器<font color='red'>控制</font>软件的设计
详解单相逆变器重复控制与模糊PI控制相结合
1.引言 UPS通常用在对电源质量要求很高的场合,如金融部门、医疗中心、通信系统、军用设备等。一般要求UPS的输出波形质量好,动态响应快,抗扰能力强。近年来,中外学者发展出了多种逆变电源波形控制技术:PID控制,无差拍控制,滑模变结构控制,重复控制,模糊控制等。各种控制方法均具有各自的特点,表现出优良的特性和不足。本文针对UPS逆变电源波形不能兼顾稳态效果和动态效果的问题,建立了 单相 逆变器 的数学模型,提出了基于重复控制和模糊PI控制相结合的新型控制策略。利用重复控制消除 逆变器 周期性干扰,提高其稳态精度,利用模糊PI控制改善 逆变器 对非周期扰动的瞬态响应速度。实验结果表明,基于该控制器控制的UPS输出波形质量好,稳态精
[电源管理]
详解单相<font color='red'>逆变</font>器重复<font color='red'>控制</font>与模糊PI<font color='red'>控制</font>相结合
共享基于tc1的pwm脉宽调制器设计
#include iom16v.h #define uchar unsigned char #define uint unsigned int //数码管字型表,对应0,1,2,3,4,5,6,7,8,9,E// uchar Table ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x79}; uchar Data1 ={10,0,5,0}; //定义初始方波占空比:50% uchar Data2 ={3,9,1,0}; //设定PWM频率:8M/2046=3910Hz uchar Key1_Flag,
[单片机]
基于PID单相逆变器复合控制方案设计
引言   PID控制作为一种经典控制 算法 ,具有结构简单、易于调试、动态响应特性快、鲁棒性强等特点。但是,对于中、低频周期信号,该算法仍无法实现无静差控制;对由非线性负载引起的输出波形畸变的调节能力也较差。   本文介绍了一种PID控制器与重复控制器采用串联拓扑结构的方案,将稳定的PID+控制对象闭环系统作为重复控制器的控制对象,在保证系统稳态误差和动态性能的同时,简化了重复控制器的设计。   1 逆变器模型     式中,u0为输出电压;i 为电感电流; 为负载电阻;C为滤波器电容;£为电容等效串联电阻:       取采样频率和 开关 频率相等,把逆变桥看作一个零阶保持器,将式(2)离
[电源管理]
基于PID单相<font color='red'>逆变</font>器复合<font color='red'>控制</font>方案设计
负载串联谐振逆变器的逆变控制策略
摘要:负载串联谐振和负载并联谐振是常见的感应加热方式,前者由于具有一系列良好的特性已经得到了越来越广泛的应用。重点介绍了负载串联谐振的逆变控制,并给出了相关的实验结果。 关键词:负载串联谐振;频率跟踪;延时补偿 1 概述 逆变电路根据直流侧储能元件形式的不同,可划分为电压型逆变电路和电流型逆变电路。电流型逆变器给并联负载供电,故又称并联谐振逆变器。电压型逆变器给串联负载供电,故又称串联谐振逆变器。 串联谐振逆变器在感应加热领域应用非常广泛,图1是它的基本原理图。它包括直流电压源,开关S1~S4和RLC串联谐振负载。 由于设计的是电压型负载高频逆变器,而达到高频,则要减小开关损耗。减小开关损耗的方法之一就是采用零电流开关。对于串联R
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved