选取降压拓扑结构开关电源电感器的基本要点

最新更新时间:2014-08-09来源: 互联网关键字:降压拓扑结构  开关电源 手机看文章 扫描二维码
随时随地手机看文章

  开关电源电感器是开关电源设备的重要元器件,它是利用电磁感应的原理进行工作的。它的作用是阻交流通直流,阻高频通低频(滤波),也就是说高频信号通过电感线圈时会遇到很大的阻力,很难通过,而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。电感线圈对直流电的电阻几乎为零。

  图1所示为一个降压拓扑结构开关电源的架构,该构架广泛应用于输出电压小于输入电压的开关电源系统。在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。根据楞次定律,di=E*dt/L,流过电感器的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。由于流过负载电阻RL的电流稳定增加,输出电压成正比增大。

  

  图1:典型的降压拓扑结构电源

  在达到预定的电压或电流限值时,开关电源控制集成电路将开关断开,从而使电感周围的磁场衰减,并使偏置二极管D1正向导通,从而继续向输出电路供给电流,直至开关再度接通。这一循环反复进行,而开关的次数由控制集成电路来确定,并将输出电压调控在要求的电压值上。图2所示为在若干个开关循环周期内,流过电感器和其它降压拓扑电路元件上的电压和电流波形。

  

  图2:采用降压拓扑结构的开关电源的开关动作波形图

  电感值对于在开关电源开关断开期间保持流向负载的电流很关键。所以必须算出保持降压变换器输出电流所必需的最小电感值,以确保在输出电压和输入电流处于最差条件下,仍能够为负载供应足够的电流。为确定最小的电感值,需要知道如下信息:

  输入电压范围

  输出电压及其规定范围

  工作频率(开关频率)

  电感器纹波电流

  运行模式:连续运行模式还是非连续运行模式

  下列公式用于计算降压变换器所需的电感值。

  L1=Vo(1-Vo/(Vin-Von))/(f*dI)

  连续运行模式下:dI < 1/2I

  为了算出适用于开关电源整个运行条件的最小电感值,对参数值的选择必须能够保证在各项参数处于最不利组合的条件下,所选择的这一电感值仍能将纹波电流保持在特定的数值范围内。而针对降压型开关电源,其最不利组合条件为:输入电压和频率均处于各自的最低数值时。此外,还要将输出电压也取为其最小规定值,以确定能够保持正常调节功能所需的最低电感值。设计者可以按照自己所习惯的方式,对这些数值进行控制,以达到最差条件成立的状态。

  

  图3:典型的降压电源系统技术规格

  按照表1中所列出的数据,最小电感值计算如下:

  L1(min)=Vo(min)(1-Vo(min)/(Vin(min)-Von))/(f(min)·dI)

  L1(min)=4.95V(1-4.95V/(20V-0.7V))/(693,000Hz * 0.5A)

  L1(min)=10.6mh

  因此,在开关电源这一具体应用中,电感器的电感值至少为10.6 mh,而其电流额定值也要在最低的20安培的工作电流之上,并保持足够的安全系数。而如果选择一个电感值低于此最小值的电感器,就将导致降压变换器可能无法在最大电流下将其输出电压保持在规定范围内。

  将电感值确定以后,实际电感器的设计必须符合相关电气标准、系统尺寸和安装方式等限制。许多磁性元件供应商均提供各种型号的标准产品,可满足绝大多数的设计标准要求。但是,在设计中采用现货供应的标准产品,有可能导致电感器的性能和尺寸方面有所不足,并可能最终对产品的销售造成不利影响。而幸运的是,一些供应商能够提供必要的定制工程设计支持,以满足将特定电感值、电气性能和外形限制要求结合在一款完全成熟的产品上,促进设计的最优化。充分利用了业界的专业技术,从而最大程度地缩短了设计和测试的时间,加速开关电源产品的上市。

关键字:降压拓扑结构  开关电源 编辑:探路者 引用地址:选取降压拓扑结构开关电源电感器的基本要点

上一篇:降压调节器变身智能可调光LED驱动器的创新设计
下一篇:传统的UPS电源将与新兴的飞轮UPS电源同在

推荐阅读最新更新时间:2023-10-12 22:43

揭秘:开关电源EMI技术方案
1.开关电源的EMI源 EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 (1)功率开关管 功率开关管工作在On-Off快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。 (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。 (3)整流二极管 整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高dv/dt,从而导致强电磁干
[电源管理]
集成RCC式开关电源技术方案及应用
线性稳压电源因具有电路简单和成本低廉的优点,一直在低功率应用中倍受欢迎。这个线性稳压电源只需少量元件,且与开关电源SMPS(Switch Mode POWER Supply)相比,更易于设计和制造。然而,由于以下两个原因,近年来线性电源开始逐渐被替代:其一,许多线性电源都是作为PDA、无绳电话和手机等产品的外部电源(EPS)绑定销售。如今EPS必须遵循严格的新节能标准,而此类标准几乎将线性电源排除在外,因为线性电源通常无法达到工作效率和空载功耗方面的标准;其二,大多数先进的低功率SMPS在成本和简单性方面与线性电源相当。这里将探讨低功率SMPS在初步应用阶段的不足之处,并讨论一种可行的方法,以帮助设计工程师设计出在成本效益方面符合E
[电源管理]
集成RCC式<font color='red'>开关电源</font>技术方案及应用
高频开关电源系统中整流模块的功能设计
引 言   随着我国科技生产水平的不断提高, 各行各业对供电质量的要求越来越高, 而智能高频开关电源作为一种继电保护装置和控制回路装置, 为生活和生产中的供电的可靠性提供了有力的保障。当市电供电中断时还可以作为后备电源, 所以说智能高频开关电源是对供电质量保证的重要组成部分之一。它具有高度灵活组合、自主监控的特点, 另外可靠性强、稳定性好且具有体积小、噪声低、节能高效、维护方便等也是它的一大优点。     可以说智能高频开关电源是一种集计算机技术、控制技术、通信技术于一体的高科技产品, 可实现系统的自动诊断、自动测试和自动控制。本文主要阐述的是智能高频开关电源的整流模块的设计方案。 1  系统总体结构介绍   智能
[电源管理]
高频<font color='red'>开关电源</font>系统中整流模块的功能设计
开关电源滤波电容的选择
很多电子设计者都晓得滤波电容在电源中起的感化,但在开关电源输入端用的滤波电容上,与工频电路当选用的滤波电容并纷歧样,在工频电路顶用作滤波的通俗电解电容器,其上的脉动电压频率仅有100赫兹,充放电工夫是毫秒数目级,为取得较小的脉动系数,需求的电容量高达数十万微法,因此普通低频用通俗铝电解电容器制造,目的是以进步电容量为主,电容器的电容量、损耗角正切值以及漏电流是辨别其好坏的次要参数。   在开关稳压电源中作为输入滤波用的电解电容器,其上锯齿波电压的频率高达数十千赫,乃至数十兆赫,它的请求和低频使用时分歧,电容量并不是次要目标,权衡它利害的则是它的阻抗一频率特征,请求它在开关稳压电源的任务频段内要有低的等的阻抗,同时,关于电源外部,因
[电源管理]
<font color='red'>开关电源</font>滤波电容的选择
开关电源的冲击电流控制方法
   1. 引言   开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路   由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。   欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击
[电源管理]
<font color='red'>开关电源</font>的冲击电流控制方法
电流传输比(CTR)对光耦反馈式开关电源设计的影响
CTR:发光管的电流和光敏三极管的电流比的最小值。 隔离电压:发光管和光敏三极管的隔离电压的最小值。 光耦的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。 集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小
[电源管理]
如何执行开关电源的合理设计
开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管 多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正 激。半桥、桥式电路都属于正激电路。   正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功 率可采用
[电源管理]
如何执行<font color='red'>开关电源</font>的合理设计
高压开关电源的应用电路设计
随着电源技术的不断发展和成熟, 开关电源 作为一种体积小、重量轻、高频、高效率的电力变换装置,被广泛用于各个领域。雷达显示器作为雷达系统的“眼睛”要求起其具有高可靠性,而其电源的可靠性则要求更高。      下面是某型雷达显示器对高压电源的技术要求:      (1)输入电压:400 Hz/220 V±10%      (2)输出电压:+4 500 V -1 600 V      (3)输出电流:+4 500 V/1 mA-1 600V/1mA      (4)负载稳定度:≤10-3(5)电压稳定度:≤5×10-3      (6)输出电压纹波:≤1×10-3(7)MTBF:≥5 000 h      (8)延时时间:≥20 s  
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved