让数字电源控制器与模拟控制器兼容的电路

最新更新时间:2014-08-30来源: 互联网关键字:模拟控制器  数字电源  控制器 手机看文章 扫描二维码
随时随地手机看文章

  最近,超大规模集成(VLSI)技术的发展扩宽了数字控制应用范围,尤其是在电源电子元件方面的应用。数字控制IC具有多种优势,比如裸片尺寸更小、无源元件数量更少、成本更低。 另外,数字控制可利用电源管理总线(PMBus)来完成系统配置;高级控制算法能改善性能;可编程性则可实现应用优化。随着数字电源管理的进一步普及并代替大量模拟控制器,它必须保持现有功能的向后兼容性,从而使数字电源模块和模拟电源模块均可在同一个系统中工作。

  模拟电源模块中一般使用输出电压调整,这样最终用户可以通过外部电阻更改电源模块的输出电压。 它具有增强的灵活性,允许将某些经过选择的标准模块用到几乎所有应用中,而无论电压要求如何。图1显示AGF600-48S30模拟电源模块中调整输出电压的典型配置。

  输出电压可通过改变连接电源模块正输出端或接地端的电阻来进行调节通过连接外部电阻RUP并使RDOWN浮空,可以向上调整输出电压(高于标称输出电压),或者通过连接外部电阻RDOWN并使RUP短路(电阻值为零)向下调整(低于标称输出电压)。

  

  图1. 调整AGF600-48S30 DC-DC转换器的输出电压

  在模拟解决方案中,RUP和RDOWN可改变误差放大器的基准电压。 误差放大器利用电阻分压器感测输出电压,分压器通过负反馈连接误差放大器的反相输入端。误差放大器的输出电压控制驱动信号的占空比,进而设置输出电压。因此,输出电压随基准电压的变化而改变,而RUP或RDOWN可以改变基准电压,进而向上或向下调整输出电压。

  图2显示两种广泛用于模拟电源模块中的调压方式。图2(a)中的模拟控制器引脚允许外部电阻 RDOWN降低误差放大器同相输入端的电压,从而降低输出电压。外部电阻RUP与电阻分压器串联连接,可降低施加在误差放大器反相输入端的电压,从而增加输出电压。图2(b)中的模拟控制器不提供针对内部基准电压的访问,但可以加入一个外部误差放大器和基准电压源,以便对输出电压进行调整。外部放大器输出端与内部放大器输出端相连,有效地旁路了内部误差放大器。然后,基准电压可采用之前的相同电路进行配置,从而以同样的方式对两个电源模块进行调整。

  

  图2. 利用(a)带有可配置内部基准电压的模拟控制器,

  或者(b)带有固定内部基准电压的模拟控制器调整模拟电源模块的输出电压数字控制器来说所有的控制功能均由数字逻辑实现#e#

        对于数字控制器来说所有的控制功能均由数字逻辑实现 。图3所示为集成PMBus接口的高级数字控制器 ADP1051 的功能框图。该器件非常适合高密度DC-DC电源转换,具有6个可编程脉冲宽度调制(PWM)输出,可控制大部分高效电源拓扑。另外,该器件还能控制同步整流(SR),并集成6个模数转换器(ADC),能够采样模拟输入电压、输入电流、输出电压、输出电流、温度以及其它参数。 转换为数据后,将这些信号发送至数字内核模块进行处理。该器件采用灵活的状态机架构,以硬件实现全部功能,提供稳定可靠的解决方案,但无法通过编程实现设计以外的功能。器件的全部功能——包括输出电压调整——均以数字方式处理。为了调整输出电压,应通过PMBus接口发送一条命令,改变数字基准电压值。

  

  图3. 数字控制器ADP1051功能框图

  考虑整个控制环路,输出电压通过电压分压器或者运算放大器缩放到合适的值,然后输入给VS+引脚。ADC对该电压进行采样。 数字内核知道数字化的输出电压值只采用逻辑电平信号工作,因此无法使用外部基准电压并旁路内部比较器和滤波器。受限于这种固定的硬件配置,向后兼容现有模拟调整功能的唯一途径是调节VS+引脚上的ADC检测电压。一种方法是重新配置反馈网络。

  图4中,RD1和RD2构成标准反馈网络——一个简单的电阻分压器,可在ADC检测输出电压之前对其进行调节。检测电压为:

  

  其中,VO是电源模块的实际输出电压。采用标准反馈网络,则输出电压无法以模拟方式调整。如图4所示,通过加入RUP, RT0和VTRIM的方式重新配置反馈网络可对比例输出电压进行调节。于是,检测电压为:

  

  VS+引脚上的正常工作电压为1 V。若 VTRIM为1 V左右且RT0远大于RD2,则可忽略电路的其余分支部分。复合网络用作简单分压器,并调节RUP电阻值,提供类似于模拟控制器的特性,实现了模拟电源模块中的电压向上调整。

  

  图4. ADP1051可调整反馈网络

  然而,提供向下调整能力则要更为复杂。数字控制器不知道系统应当输出的确切电压值,因此它会尝试最大程度降低VVS+ 和内部数字基准电压之间的误差。 VVS+ 将始终随内部数字基准电压的变化而改变,其典型值设为1 V。等式2显示VO与 VTRIM呈线性关系。由图2可知,向下调整输出电压的机制是产生一个表示所需输出电压与标称输出电压之差的误差电压。内部的基准电压将先会减去这个误差电压,然后才会加到误差放大器的同相端。若在误差放大器的反相输入端加入相同的电压差,则两个电路都将具有相同的输出结果。因此, VTRIM应当与所需的输出电压和标称电压之差成比例,而非采用固定值。

  图5中的电路具有兼容模拟向上或者向下调压的功能两个电阻分压器产生两个基准电压,其中一个基准电压表示模拟控制器所需的输出基准电压,另一个表示内部基准电压。利用一个电压跟随器来避免所需的输出基准电压与后续电路相互影响。利用AD822 FET输入运算放大器,将所需的输出基准电压(V1)从模拟控制器的内部基准电压(V2)中去除,得到所需的电压差。此电路的线性放大增益确保了VTRIM足够大,从而能对VVS+产生影响。

  

  图5. 重新配置反馈网络,方便进行模拟输出调整

  目标输出电压调整特性的定义参见AGF600-48S30数据手册。表1显示了一组应用于新配置反馈网络中的参数,采用此组参数,可以使其兼容模拟电源模块电压调整特性。

  

  表1. 图5所示电路的电阻值

  采用等式2和表1中的数值,便可计算输出电压调整特性。图6显示结果曲线。目标值和计算值之间的误差由重新配置的反馈网络产生。该误差极小(标称输出电压为30 V时,该误差值不足0.1 V),这表示该电路的输出结果良好。

  

  图6. 使用重新配置的反馈网络后,调整ADP1051输出电压的计算结果: (a)向下调整 (b)向上调整

  通过计算可以验证这种重新配置反馈网络以调整输出电压的方法,并为其它使用数字基准电压的数字电源控制器——比如 ADM1041A, ADP1046A, ADP1050和ADP1053等——向后兼容模拟控制器提供思路,增强了数字电源解决方案的灵活性。

关键字:模拟控制器  数字电源  控制器 编辑:探路者 引用地址:让数字电源控制器与模拟控制器兼容的电路

上一篇:基于SPWM控制全数字单相变频器的设计及实现
下一篇:基于LT3573隔离型反激式的DC-DC开关电源的设计

推荐阅读最新更新时间:2023-10-12 22:44

安森美半导体推出应用于LED照明的全新高能效控制器方案
2018年3月6日 – 推动高能效创新的安森美半导体 (ON Semiconductor,美国纳斯达克上市代号: ON )推出两款全新 LED照明控制器 方案。 可调光的 NCL30386和 不可调光的 NCL30388,为 LED照明 设备(如办公室和工业楼宇的灯具等)的设计人员提供领先市场的选择 。 这两款器件均为用于反激、降压-升压或单端初级电感转换器(SEPIC)电源拓扑的高功率因数(PF)、单段、恒流(CC)及恒压(CV) 初级端调节( PSR)脉冲宽度调制(PWM)控制器。它们采用准谐振(QR)模式工作,能效水平超过欧盟的Ecodesign、美国的能源之星(ENERGY STAR®)和NEMA SSL等能耗标准。
[电源管理]
安森美半导体推出应用于LED照明的全新高能效<font color='red'>控制器</font>方案
白话数字电源
数字电源的概念已经被提出多年,很多公司也已经推出了各种数字电源产品,可以说数字电源算不上是什么新生事物。然而,由于关于数字电源的宏观、中立 性的中文文献并不多,所以数字电源的轮廓依然并不十分清晰。多数文献来源于数字电源生产厂商,他们当然倾向于夸大数字电源的优势,而且从来不忘记宣传他们 自己的产品,读者可得到的有价值信息十分有限。媒体也往往跟着“忽悠”,多有赞誉、吹捧之辞,并喜欢引用厂商的官方套话,常常让 人一头雾水、不知所云。本人不是数字电源的“专家”,通过与厂商的接触和阅读一些中、英文文献,大胆整理出这篇文章,希望能有助 于将复杂的问题简单化,勾勒出一幅较为清晰的数字电源画面。 为何需要数字电源 我们知道,电子产品所需的
[电源管理]
白话<font color='red'>数字电源</font>
LCD实验学习笔记(六):存储控制器
s3c2440可使用地址空间为1GB(0x00000000到0x40000000)。 1G空间分为8个BANK,每个BANK为128MB。 设27条地址线,和8个片选引脚(nGCS0-nGCS7)。 内存控制器根据地址所在的BANK,自动决定要使用的片选引脚,以使能相应的BANK所连接的设备。 32位CPU不一定用32条地址线。 CPU认为一个地址对应一个字节(8bit)。CPU发出一个地址,要读取内存一个字节的数据(内存在BANK6地址从0x30000000开始),内存控制器操作片选引脚和地址线访问由两个16位内存芯片组成的32位内存时,内存芯片会一次性返回32位数据(4个字节),内存控制器再从中挑出CPU指定的字节。所以这时地
[单片机]
爱特梅尔发布首个带有LF-RFID阅读器的单一封装微控制器
仅需少许外部元件就能实现小型低成本RFID阅读器和编程器 微控制器及触摸解决方案的领导厂商爱特梅尔公司(Atmel® Corporation)宣布提供带有RFID阅读器模块和16kB在系统自编程 (in-system self-programmable) 闪存的AVR®微控制器(MCU)产品。爱特梅尔ATA5505采用5mm x7mm QFN封装,并在100-150kHz的低频(low-frequency,LF)范围工作,适合于各种各样的LF幅移键控 (Amplitude Shift Keying,ASK) RFID阅读器和编程器,用于安全管制、工业自动化和动物识别应用。 使用ATA5505微控制器,仅需加入少许外部组件和
[嵌入式]
内带监控器的高电压电流型PWM控制器HV9606应用
1.概述   HV9606主要应用于分布式电路板安装电源。该器件开关频率很高,电源输出较大功率(20A,3.3V)时,高频变压器的体积很小。该器件工作电压很低,输入电流很小。采用该控制器的小功率电源,具有很高的效率,通常可达到90%以上。   HV9606采用固定频率电流型控制模式,器件内部输出脉冲占空比被限制在50%以下。利用该器件外加很少元器件,即可组成单端反激、正激和同步正激隔离或不隔离直流变换器。由于工作电压UDD很低,所以在不隔离变换器中,高频变压器可省去升压绕组。芯片内的充电泵可以产生驱动外接N沟道MOSFET所需的栅极电压,并且不需要箝位。该器件对通信和网路系统中常出现的250V高压瞬变具有一定的抗干扰性,符合IEE
[电源管理]
内带监控器的高电压电流型PWM<font color='red'>控制器</font>HV9606应用
基于STM32F107VCT6微控制器的控制系统解决方案
本文简要介绍了电动汽车交流充电桩的内容和研究现状。针对需要设计了基于STM32F107VCT6微控制器的控制系统解决方案,并详细介绍了控制系统的软硬件设计和桩体的电气部分设计。该系统提供包括人机交互、充电控制、电能计量、IC卡付费、票据打印、运行状态监测、充电保护和充电信息存储和上传等多种完善的功能,满足充电过程的要求。 随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的方向,发展电动汽车将是解决这两个难题的最佳途径。我国高度重视电动汽车的发展,国家相继出台了一系列标准来扶持和规范电动汽车的发展。但要实现电动汽车大面积普及我国还有很长的
[单片机]
基于STM32F107VCT6微<font color='red'>控制器</font>的控制系统解决方案
PID控制器参数整定的方法
PID控制器参数整定的方法很多,概括起来有两大类: 一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。 PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。 现在一般采用的是临界比例法。 利用该方法进行PID控制器参数的整定步骤如下: (1)首先预选择一个足够短的采样周期让系统工作; (2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期; (3
[嵌入式]
德州仪器推出新型MSP430微控制器
德州仪器(TI)近日发布了用于传感应用的超值超低功耗MSP430™微控制器(MCU)。现在,开发人员可通过MSP430超值传感系列MCU中的各种集成混合信号功能实现简单的传感解决方案。该系列新增产品还包括两款新型入门级器件和一款新型TI LaunchPad™开发套件,可帮助用户快速轻松地进行评估。 TI MSP430超值传感系列MCU的特点和优点 开发人员现在可以使用代码示例库灵活定制25个常用系统级功能,包括定时器、输入/输出扩展器、系统复位控制器、电可擦除可编程只读存储器(EEPROM)等。 通用核心架构、工具和软件生态系统以及包括迁移指南在内的广泛文档,使开发人员可以轻松地针对每个设计选择合适的MSP430超值传
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved