等离子和液晶电视如今已经走入了千家万户,这两种电器的开关电源设计比较特殊,只能采用有源或者无源PFC模式,并且需要能够长时间在无散热通风的环境下工作。这就要求电源不仅要拥有高功率密度和平滑的电磁干扰信号,还要尽量少的使用元器件。而在这些方面,半桥LLC谐振转换器拥有诸多的优势。
半桥LL谐振电容和谐振电感的配置
单谐振电容和分体谐振电容都存在于半桥转换器当中。如图1所示。对于单谐振电容配置而言,它的输入电流纹波和均方根(RMS)值较高,而且流经谐振电容的均方根电流较大。这种方案需要耐高压(600~1,500V)的谐振电容。不过,这种方案也存在尺寸小、布线简单等优点。
(a)单谐振电容;(b)分体谐振电容。
图1:半桥LLC转换器的两种不同配置
分体谐振电容相较于单个谐振电容而言,其输入电流纹波和均方根值较小。谐振电容仅处理一半的均方根电流,且所用电容的电容量仅为单谐振电容的一半。当利用钳位二极管(D3和D4)进行简单、廉价的过载保护时,这种方案中,谐振电容可以采用450V较低额定电压工作。
顾名思义,半桥LLC转换器中包含2个电感(励磁电感Lm和串联的谐振电感Ls)。根据谐振电感位置的不同,谐振回路也包括两种不同的配置,一种为分立解决方案,另一种为集成解决方案。这两种解决方案各有其优缺点,采用这两种方案的LLC的工作方式也有轻微差别。
将谐振电感安装在变压器外面是有目地的。其能够帮助设计者提高设计的灵活性,令设计人员可以灵活设置Ls和Lm的值;此外,EMI幅射也更低。不过,这种解决方案的缺点在于,变压器初级和次级绕组间的绝缘变得复杂,并且绕组的冷却条件变差,并需要组装更多元件。
(a)分立解决方案;(b)集成解决方案。
图2:谐振储能元件的两种不同配置
在另一种集成的解决方案中,变压器的漏电感被用作谐振电感(LLK=LS)。这种解决方案只需1个磁性元件,而且会使得开关电源的尺寸更小。此外,变压器绕组的冷却条件更好,且初级和次级绕组之间可以方便地实现绝缘。不过,这种解决方案的灵活性相对较差(可用的LS电感范围有限),且其EMI幅射更强,而初级和次级绕组之间存在较强的邻近效应。半桥LLC转换器建模和增益特性
LLC转换器可以通过一阶基波近似来描述。但只是近似,精度有限。而在Fs频率附近精度达到最高。
等效电路的传递函数为:
这其中,Z1和Z2与频率有关,由此可知LLC转换器的行为特性类似于与频率有关的分频器,负载越高,励磁电感Lm所受到的交流电阻Rac产生的钳位作用就越大。这样一来,LLC储能电路的谐振频率就在Fs和Fmin之间变化。在使用基波近似时,实际的负载电阻必须修改,因为实际的谐振回路是由方波电压驱动的。
相应地,转换器的品质因数为:
串联谐振频率Fs和最小谐振频率Fmin分别为:
图3:标准化增益特性(区域1和区域2为ZVS工作区域,区域3为ZCS工作区域)。
LLC转换器所需要的工作区域是增益曲线的右侧区域(其中的负斜率意味着初级MOSFET工作在零电压开关ZVS模式下)。当LLC转换器工作在fs=1(对于分立谐振回路解决方案而言)的状态下时,它的增益由变压器的匝数比来给定。从效率和EMI的角度来讲,这个工作点最具吸引力,因为正弦初级电流、MOSFET和次级二极管都得到优化利用。该工作点只能在特定的工作电压和负载条件下达到(通常是在满载和额定Vbulk电压时)。
增益特性曲线的波形及所需的工作频率范围由如下参数来确定:Lm/Ls比(即k)、谐振回路的特征阻抗、负载值和变压器的匝数比。可以使用PSpice、Icap4等任意仿真软件来进行基波近似和AC仿真。
图5:分立(a)和集成(b)谐振回路解决方案的仿真原理图。
对于LLC谐振转换器而言,满载时品质因数Q和Lm/Ls的恰当选择是其设计的关键。这方面的选择将影响到如下转换器特性:
输出电压稳压所需的工作频率范围;
线路和负载稳压范围;
谐振回路中循环能量的大小;
转换器的效率;
在设计当中,如果想要优化在满载状态时的Q和K,就要确定如下几个因素:效率、线路、负载稳压范围。品质因数Q直接取决于负载,它是由满载条件下的谐振电感Ls和谐振电容CS确定的。Q因数越高,就导致工作频率范围Fop越大。Q值较高及给定负载时,特征阻抗就必须较低,因为低Q会导致稳压能力下降,且Q值很低的情况下LLC增益特性会退化到SRC。
而在k=Lm/Ls方面,它决定了励磁电感中存储多少能量。k值越高,转换器的励磁电流和增益也就越低;且k因数越大,所需的稳压频率范围也就越大。
在实践中,Ls(如集成变压器解决方案的漏电感)只能在有限的范围内取值,而且是由变压器的构造(针对所需的功率等级)和匝数比决定。然后,Q因数的计算由所需的额定工作频率fs确定。这之后,k因数也必须计算出来,以确保输出电压稳压(带有线路和负载变化)所需的增益。而在设定k因数时,可以让转换器在轻载时无法维持稳压——可以方便地使用跳周期模式来降低空载功耗。
通过对实例的讲解,本文介绍了半桥LLC谐振转换器设计的部分要点和技巧,如配置、工作状态、增益特性等等。不仅如此,还对一些特定的参数进行了确定。希望本篇文章能够帮助大家增进对半桥LLC谐振转换器的了解。
上一篇:高功率因数的单相全桥PWM整流电路原理
下一篇:全桥变换器结构 软开关移相电源设计
推荐阅读最新更新时间:2023-10-12 22:47
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC