移相全桥开关电源模块电路设计

最新更新时间:2014-11-15来源: 互联网关键字:移相全桥  开关电源  模块电路设计 手机看文章 扫描二维码
随时随地手机看文章

  这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现 ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频,VD3、VD4是反向电流阻断二极管,用来实现滞后臂 VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。

  电路原理:当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在 关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电 压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充 电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关 断VT4即是零电流关断。

关键字:移相全桥  开关电源  模块电路设计 编辑:探路者 引用地址:移相全桥开关电源模块电路设计

上一篇:运用于单相智能电表的IC卡接口电路设计
下一篇:嵌入式系统中的USB总线接口电路图

推荐阅读最新更新时间:2023-10-12 22:48

单片开关电源原理及应用
一、前言   开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。三端离线式脉宽调制单片开关集成电路TOP(Threeterminaloffline)将PWM控制器与功率开关MOSFET合二为一封装在一起,已成为开关电源IC发展的主流。采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。 二、TOP开关结构及工作原理 1、结构   TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO220或8脚DIP封装。少数采用8脚封装的TOP
[应用]
开关电源原理与设计(连载55)
      2-1-1-6.各种波形电源变压器初级线圈匝数的计算       (2-18)式虽然是用于计算双激式开关电源变压器初级线圈N1绕组匝数的公式,但只需把式中的某个别参数稍微进行变换或修改,同样可以用于计算其它波形电源变压器初级线圈匝数的公式。这里,我们先来推导用于计算正弦波电源变压器初级线圈匝数的公式。方法如图2-8所示,先求正弦电压的半周平均值Ua,因为正弦电压的半周平均值Ua正好等于方波电压的幅值E,因此,只需把正弦电压的半周平均值代入(2-18)式,即可得到计算正弦波电源变压器初级线圈匝数的公式。       但正弦电压的半周平均值Ua一般很少人使用,因此,还需要把正弦电压的半周平均值Ua再转换成正弦
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载55)
高频开关电源的平均电流型控制
  1987年,B.L.WilkinsON提出了平均电流型控制方案,最早应用于功率因数校正转换器,并获得专利。图所示是以Buck转换器为例给出的平均电流控制电路框图。电流给定信号Ue是电压调节器的输出信号,图中未画出电压环。   图 平均电流型控制的Buck转换器   平均电流型控制方案需要检测电感电流iL,电流检测信号与电流给定iL进行比较后,经过电流调节器生成控制信号Uc,Uc与锯齿波调制信号进行比较,产生出PWM脉冲。电流调节器一般采用Pl型补偿网络,并可以滤除采样信号中的高频分量如图所示。平均电流型控制比较适用于Boost功率因数校正、电池充电控制、太阳能发电等系统。与峰值电流控制相比,它是直接控制电感电流的平
[电源管理]
高频<font color='red'>开关电源</font>的平均电流型控制
SDS2000在开关电源分析中的应用
电源是所有电子产品不可或缺的组成部分,电源分为开关电源、线性电源等类型,其中开关电源已经成为数字计算、网络通信系统中电源的主流架构。开关电源的好坏关系到产品的整体性能。因此,在研发和生产测试中对于电源的精确分析显得尤为重要。SIGLENT推出的SDS2000超级荧光示波器配备强大的电源分析模块,支持绝大部分电源性能指标的精确测试测量。下面将通过分析电源板输入模块,给大家详细介绍SDS2000的电源分析功能。 以电源演示版STBX为例,其物理视图如图1所示: 图1 STBX STBX电路原理图如图2所示:  图2 原理图 在进行操作之前,首先应检查示波器、电源演示板是否运行良好,在保证示波器、电源演示板及探头等所需物品均没问
[电源管理]
SDS2000在<font color='red'>开关电源</font>分析中的应用
开关电源历程
1. 电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1.1 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流
[电源管理]
IRIRS29751S120W正负30VD类音放电源解决方案
IR 公司的IRS29751/2是自振荡半桥驱动器,其频率和死区时间能用两个外接元件编程,微功耗起动和超低静态电流,典型应用为LCD和PDP TV,通信和PC开关电源,家庭音响系统.本文介绍了IRS2795(1,2)主要特性,方框图,应用电路图以及D类音频放大器+/-30V 120W电源参考设计主要指标,主板和控制板电路图,材料清单,PCB布局图. The IRS2795(1,2) is a self oscillating half-bridge driver IC for DC-DC resonant converter applications, especially the LLC resonant half-bridge
[电源管理]
IRIRS29751S120W正负30VD类音放电源解决方案
开关电源钳位保护电路及散热器的设计
  开关电源漏极钳位保护电路的作用是当 功率 开关 管(MOSFET)关断时,对由高频变压器漏感所形成的尖峰电压进行钳位和吸收,以防止MOSFET因过电压而损坏。散热器的作用则是将单片开关电源内部产生的热量及时散发掉,避免因散热不良导致管芯温度超过最高结温,使开关电源无法正常工作,甚至损坏芯片。   下面分别阐述漏极钳位保护电路和散热器的设计要点、设计方法及注意事项。   1 设计开关电源漏极钳位保护电路的要点及实例   在“输入整流滤波器及钳位保护电路的设计”一文中(详见 电源技术 应用 2009年第12期),介绍了反激式开关电源漏极钳位保护电路的工作原理。下面以最典型的一种漏极钳位保护电路为例,详细阐述其设计要
[电源管理]
<font color='red'>开关电源</font>钳位保护电路及散热器的设计
开关电源基于补偿原理的无源共模干扰抑制技术
摘要:介绍了一种基于补偿原理的共模干扰抑制技术,通过抑制电源辐射来减少变换器的共模干扰。这种方法被推广应用于多种功率变换器拓扑,理论和实验结果都表明该技术有效减少了电路的共模干扰。 关键词:开关电源;共模干扰;抑制技术 引言 由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。 图1 CM及DM噪声电流的耦合路径示意图 传导是电力电子装置中干扰传播的重要途径。差模干扰和共模干扰是主要的传导干扰形态。多数情况下,功率变换器的传导干扰以共模干扰为主。
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved