一种无APFC的全压开关电源设计方案

最新更新时间:2014-11-30来源: 互联网关键字:APFC  全压  开关电源 手机看文章 扫描二维码
随时随地手机看文章

  1.引言

  相对于传统线性电源,开关电源拥有体积小、重量轻、效率高等方生俱来的优势。因此近些年,研究开关电源的人越来越多,相应的技术也层出不穷。研究成本低廉、性能可靠、兼容性强的开关电源成为众多电源设计工程师不断努力的目标。本文针对大功率开关电源提出一种无APFC的低成本全电压设计方案,该方案使用自动倍压方式有效减小火牛直流输入电压的范围,从而大大降低电源成本。

  2.全压电源

  统计全世界交流电压,可以将电压分为:

  日本为代表的100V,美国为代表的120V,墨西哥为代表的127V,中国为代表的220V,欧洲多为230V,澳大利亚240V.因此,世界各国电压分布在100V-127V和220V-240V两个电压段。即若能满足这两个电压段要求的开关电源,即可认为是全电压开关电源。实现全压的开关电源目前大致可分为:普通无级式、APFC无级式、自动倍压式。

  2.1 普通无级式

  普通无极开关电源在小功率开关电源中应用非常广泛。在小于300W的小功率段,设计者通常在兼顾结构和成本的前提下,采用100-240V的全段电压方案。虽然结构简单,但对功率器件(如:火牛、开关管、整流管)则提出了较高要求。由于在一定范围器件参数的提高对于价格并无太大影响,使得在小功率段具备相当的性价比的。随着功率上升,电源对各部分的功率器件提出了新的要求,这个要求在价格上和技术上都有较大的困难。

  2.2 APFC无级式

  APFC是主动式PFC,使用专用PFC控制器。

  电路功率元件由标准的boost电路组成,通过电压和电流的双重反馈,其中电压位于外环,而电流位于内环。因此,APFC在保证输出端恒定电压的同时,使得电流的波形为正弦波。

  

  APFC带来的好处也是显而易见:①较大的提高功率因数;②可以兼容输入100-240V全段电压;③EMC方面有很好的改善。不足之处:

  ①体积和重量有所增大;②电源成本大概有百分之五十的上升。

  2.3 自动倍压式

  鉴于手动操作的种种弊端,以及世界各国电压规律,自动倍压式在手动倍压式基础加以改进,实现了低电压国家输入电压的自动切换。自动倍压开关可以采用继电器、MOSFET、IGBT、可控硅。由于该设计应用在50-60Hz的工频条件下,考虑过零要求,以及生产成本。

  选用可控硅作为开关切换器件。可控硅在成本上有着极大的优势,而响应速度又能满足要求。

  

  3.系统结构及原理

  电源基本指标:额定输出1200W,峰值功率2400W;输入电压可AC100-127V和220-240V;输出电压为DC160V.系统满足全球电压兼容的同时,兼具备低于0.3瓦的超低待机功耗能力。

  3.1 系统结构

  整机系统可分为主电源部分用来给功放部分提供电力。辅助电源提供初级控制电路和次级控制电路使用。控制器用来实现自动电压识别及倍压功能,同时结合MCU实现遥控唤醒系统功能。AC转DC的整流部分,辅助电源与主电源设计成独立供电方式。在待机模式中辅助电源脱离主电源整流部分,这样为低待机功耗提供了硬件基础。

  

  3.2 主电源

  3.2.1 主电源设计

  主电源采用移相全桥拓扑。全桥电路易于实现大功率的输出,而移相全桥作为全桥电路的改良版本,在整机效率方面更具备优势。桥式电路中串入谐振电感,谐振电感与MOS管的寄生输出电容Coss之间谐振。从而在MOS管开启之间使得DS端电压为零,实现零压开启。因为实现了MOS管的零压开启,降低了驱动电路以及MOS管Qg常数的要求,使得器件成本也随之降低。使用双象可控硅作为倍压开关。单向可控硅可断开整个主电源的供电。当可控硅完全断开时,整个主电源电路上所有器件均无电流环路,除去可控硅本身极小的漏电流,主电路无功耗损失。

  

 3.2.2 倍压结构和原理

  倍压方式与手动倍压原理一致,当交流电压处于1、2象限时,电流流向为(红色轨迹):AC+ -》 D1 -》 CAP1 -》 K -》 AC-,电源给给电容CAP1充电,其电压将达到交流峰值;当交流电压处于3、4象限时,电流流向为(绿色轨迹):AC- -》 K -》 CAP2 -》 D4 -》 AC+.,电源给电容CAP2充电,其电压也将达到交流峰值。因此,整流后的电压将会双倍于开关断开状态的电压。

  

  AC输入电压为AC100V-127V和AC220V-240V.由公式可知整流输出后电压范围为:

  DC283-DC360V.充分考虑器件分压:如电容ESR、开关管压降、EMI器件压降,可以认为在重载情况下整流导通约为60度,电压取值可以认为在:DC245V-DC360V.相对于普通全压电源电压取值范围(将达到:DC122- DC360V)有大幅度衰减。

  3.3 辅助电源

  辅助电源采用反激RCD拓扑。辅助电源为所有控制电路提供电力,由于整体要求功耗低于15W,选用反激拓扑结构的集成方案实现。

  无论在体积和成本控制均为理想的选择。集成方案中常引入了‘打嗝’模式很容易将功耗控制在0.3W以内。

  3.4 控制电路

  过零逻辑电路、倍压逻辑电路、可控硅驱动电路等组成控制电路。由于使用单向可控硅和双向可控硅相结合可以切断整流后级电路(包含滤波电容),理论上后级电路零功耗。

  结合辅助火牛,整机待机功耗可轻易控制在0.5W以内,满足‘能源之星’的要求。

  

  3.4.1 过零电路

  由于没有NTC的阻流作用,控制电路还须实现ZVS控制。倍压控制逻辑和ZVS控制逻辑必须保持同步。驱动电路则使用光耦进行隔离驱动,有效避免可控硅驱动电位不一致的问题。

  图2-4中比较器U1-B可实时监测过零状态,同时为避免多次过零判断,加入R101完成过零逻辑自锁。图2-5和2-6为实测电压和电流波形。

  其中图2-5为使用NTC限流电路,在电源开启瞬间电压和电流波形。图2-6为零压开关电路,电流得到很好的控制,电流有一个从‘0‘

  开始变大的过程。浪涌电流也低于NTC限流电路,浪涌电流得到明显的控制,且不受开机间隔的限制,可以任意开关次数和频率的限制,效果非常明显。

  

  自动倍压逻辑先于过零逻辑产生。图2-4中,比较器U1-A实时监测输入电压,其输出逻辑与过零逻辑为’与‘的关系。倍压逻辑电路一方面要能够根据输入电压自动实现倍压操作,同时要能够有效的防止干扰性波形,引起系统不必要的动作甚至误操纵的可能。如:当负大幅度波动时所带来的输入电压的波动,而这种波动是在一定范围内活动的,所以只需对门限进行设定,便可以允许一定范围内的电压波动。而在开机过程中需要避免的是电路需要避开电压上升过程带来的倍压误操作和关机过程中,电压的正常下跌时倍压的误操作。快速开关操作过程中,可能存在的倍压误操作。

  3.4.2 可控硅驱动

  双向可控硅的驱动方面对工作象限较为敏感。令驱动电压方向为横轴,电流方向为纵轴。对于双向可控硅而言,最佳工作象限为一象限其次是二三象限,第四象限通常不推荐。

  工作在第四象限的区间内,可控硅的损耗达到最大,而且对于di/dt的承受应力也急剧下降。

  因此,采用下图的二三象限工作区间,既可保证可控硅的良好性能,又能简化驱动电路。

  4.结论

  此电源拥有自动倍压、无NTC以及超低待机功耗的特点于一身。为追求环保的大功率开关电源提出了一种新的设计思路,给出了一种新的解决方案,具备较强的实用性和商用性。

关键字:APFC  全压  开关电源 编辑:探路者 引用地址:一种无APFC的全压开关电源设计方案

上一篇:浅谈开关电源中的LED显示屏设计
下一篇:智能功率开关电源IC设计

推荐阅读最新更新时间:2023-10-12 22:49

智能数字化开关电源设计方案
  引言   与线性电源相比,开关电源具有诸多优点:由于主功率晶体管工作在开关状态,其损耗小,整机效率大大提高;采用铁氧体高频变压器,使电源的体积和重量大为减少,成本更低等。一些专用电源芯片如TL494、UC3842的出现,也使开关电源的设计更为简单,同时性能可靠。但只使用专用芯片制作的开关电源输出通常为单一状态,若要改变输出状态要对硬件电路进行修改。笔者设计实现了一种单片机控制的数字化开关电源,有效的改善了上述问题。   1 数字化开关电源的设计原理   笔者设计的数字化开关电源额定功率12OW。系统以开关电源作为基本电路,采用高性能单片机作为控制系统,在控制算法的支持下,通过对输出电压和电
[单片机]
智能数字化<font color='red'>开关电源</font>设计方案
使用集成示波器,执行五项常见调试任务
使用集成示波器,让五项常见调试任务更高效 随着复杂性不断上升,实践证明,现代混合信号设计与设计人员可谓棋逢对手。嵌入式设计工程师必须戴几顶帽子,才能高效地诊断和调试最新设计。这意味着他们需要处理下述活动:设计电源,测量功率效率,在设计中采用无线电,或必须追踪可能威胁预计操作的噪声来源。 而且,调试当今设计要求在混合域环境中工作,从DC到RF,包括模拟信号和数字信号、串行总线和并行总线。在不太遥远的过去,这曾要求满满一工作台的仪器,每台仪器都有自己的接口和设置要求。 但是,正如嵌入式测试要求正在变化一样,测试仪器也在变化,最明显的是集成示波器的出现。在示波器用户调查中,我们发现,除他们的示波器外,工程师报告称,他们每个月需要多次使用
[测试测量]
使用集成示波器,执行五项常见调试任务
开关电源EMI技术方案简介
   1.开关电源的EMI源   开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。   (1)功率开关管   功率开关管工作在On-Off快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。   (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。   (3)整流二极管 整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高dv/dt,从而导致强电
[电源管理]
开关电源原理与设计(连载57)
      2-1-1-8.开关电源变压器磁滞损耗分析       由于变压器铁芯存在磁矫顽力,当励磁电流产生的磁场对变压器铁芯进行磁化结束以后,磁通密度不能跟随着磁场强度下降到零;即:励磁电流或磁场强度从最大值下降到零,但磁通密度却不是跟随磁场强度下降到零,而是停留在一个被称为“剩磁”的剩余磁通密度Br位置上。       因此,当交流磁场反复对变压器铁芯进行磁化时,总需要额外地有一部分磁场能量被用来克服磁矫顽力和消除剩余磁通,这一部分用来克服磁矫顽力和消除剩余磁通的磁场能量,对于变压器铁芯来说,是不起增强磁通密度作用的,它属于一种损耗;另外,因为磁感应强度的变化总是要落后于磁场强度一个相位,因此把这种损耗称为磁滞损耗。
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载57)
用三端稳压块制作开关电源
常见的串联 三端稳压 集成电路 ,如LM7800、LM7900、LM3xx系列,效率低,如LM7805输入电源电压10~15V时,它的工作效率仅为30%~50%;如将LM7805用于可调式稳压电源,那么其输入端电压可达35V左右,但工作效率就更低了。另外,LM7800系列TO~220封装的产品,其自身不加散热片的允许功耗仅仅1.5VA,加上理想散热片也只有20VA。开关式稳压电源具有很高的工作效率,一般可达60%~90%或以上,这里给出一款使用常见的LM317制作的 开关电源 ,其电路简单,性能可靠,值得大家一试。  电路的工作原理是,当电路工作开始瞬间,由于LM317尚未建立起工作条件,其输入端电压高于输出端,于是呈
[电源管理]
用三端稳压块制作<font color='red'>开关电源</font>
DC-DC开关电源管理芯片的设计
电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。   目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。   从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制
[电源管理]
DC-DC<font color='red'>开关电源</font>管理芯片的设计
开关电源接假负载情况详解
开关电源 在负载短路时会造成输出电压降低,同样在负载开路或空载时输出电压会升高。在检修中一般采用假负载取代法,以区分是电源部分有故障还是负载电路有故障。关于假负载的选取,一般选取40W或60W的灯泡作假负载(大屏幕彩色电视机可选用100W以上的灯泡作假负载),优点是直观方便,根据灯泡是否发光和发光的亮度可知电源是否有电压输出及输出电压的高低。但缺点也是显而易见的,例如60W的灯泡其热态电阻为500Ω,而冷态电阻却只有50Ω左右。根据下表可以看出:假设电源主电压输出为100V,当用60W灯泡作假负载时,电源工作时的电流为200mA,但启动时的主负载电流却达到了2A,是正常工作电流的10倍,因此,用灯泡作假负载,易使电源启动困难,由
[电源管理]
开关电源技术的最新进展
随着对节能技术的呼声越来越高,随着电子设备小型化的要求,随着对环境保护的更高要求,开关电源技术也在飞速地发展着.更高效率,更小体积,更少电磁污染,更可靠地工作的开关电源几乎每个月都在推陈出新.本文旨在对近两年来开关电源突出的技术进步加以介绍,具体有以下几个方面: 1 同步整流技术 自从20 世纪90 年代末期同步整流技术诞生以后,它给开关电源效率的提升做出了重要贡 献.当前采用IC 控制技术的同步整流方案己经为研发工程师普遍接受.新上市的高中档开关电源几乎没有不采用同步整流技术的作品.现在的同步整流技术都在努力地实现ZVS及ZCS方式的同步整流.自从2002 年美国银河公司发表了ZVS 同步整流技术之后,现在已经得到了广泛应用.
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved