第六章采集模块实测结果
本章主要对所设计的核磁共振信号包络采集模块进行了测试。首先进行了本底噪声测试和正弦信号测试,然后进行了室内模拟核磁共振信号的测试,提取了模拟信号的关键参数。最后模块与JLMRS找水系统结合,在野外测得大量的实际数据,提取了信号的关键参数,验证所设计的包络采集模块的稳定性与一致性。
6.1室内测试结果
室内测试主要包括本底噪声测试、标准正弦信号测试和模拟核磁共振信号测试。
6.1.1本底噪声测试及结果分析
测试方法:将采集模块的输入端短接,主控软件控制采集2次。
测试时间、地点:2008.11.17,地质宫337
测试仪器:PC机
采集时间:256ms
测试结果:如图6.1所示,黑色曲线为第一次采集波形,蓝色曲线为第二次采集波形。
从测试结果可以看出,采集到的噪声幅度小于2nV,由于主控软件设置的放大倍数为10000000倍,折算到输入端,本底噪声在10mV以内。本底噪声来源于开关电源、本身高频电路和测试环境。特别是在室内交流电网比较复杂的条件下,工频噪声极其严重。本测试为室内测试信号的幅度大小提供了参考。
6.1.2标准正弦信号测试及结果分析
1、标准测试
测试方法:用信号发生器产生幅度为1V、频率为2325Hz的正弦波输入到采集模块的输入端,参考信号频率为2325Hz,主控软件控制采集2次。
测试时间、地点:2008.11.19,地质宫337
测试仪器:PC机、信号发生器
采集时间:256ms
测试结果:如图6.2所示,黑色曲线为第一次采集波形,蓝色曲线为第二次采集波形。
由测试结果可以看出,采集模块准确地测得正弦波的包络。设定的正弦波幅度为1V,测试结果为70nV.本测试为核磁共振信号采集模块的参数标定提供了参考。
由本测试可以看出,核磁共振信号采集模块能正常稳定工作,达到了预期的结果,同时也验证了正交矢量放大方法提取信号包络的可行性。
2、频率偏差测试
测试方法:用信号发生器产生幅度为1V、频率为2325Hz的正弦波输入到采集模块的输入端,参考信号频率设置分别为2326Hz、2327Hz、2328Hz、2329Hz、2330Hz、2340Hz时,主控软件控制采集2次。
测试时间、地点:2008.11.19,地质宫337
测试仪器:PC机、信号发生器
采集时间:256ms
测试结果:如图6.3所示,黑色曲线为第一次采集波形,蓝色曲线为第二次采集波形。
由测试结果可以看出,当输入信号和参考信号出现频率偏差时,采集到的信号包络中会把这种误差体现出来,偏差越大,误差也就越大。这是由于信号正交后的高频分量经过低通滤波器衰减后,不能完全忽略不计,还是会对采集结果造成一定的影响。
将测试结果经过数据处理后,可以得到频率偏差引起的采集信号幅度误差分析。分析结果如表6.1所示。
由测试结果以及误差分析可以看出,输入信号和参考信号频率偏差在5Hz以内时,核磁共振信号采集模块采集信号幅度的误差在2%以内,工作稳定可靠,而且重复性很好。
6.1.3模拟MRS信号测试及结果分析
1、标准测试测试方法:用MRS信号源产生幅度为0.7V、频率为2325Hz的模拟MRS信号输入到采集模块的输入端,参考信号频率为2325Hz,主控软件控制采集1次信号,1次噪声。
测试时间、地点:2008.11.24,地质宫337
测试仪器:PC机、MRS信号源
采集时间:256ms
测试结果:如图6.4所示,蓝色曲线为信号波形,黑色曲线为噪声波形。
由测试结果可以看出,核磁共振信号采集模块能够准确地采集模拟MRS信号的包络,达到了预期的目的。MRS信号源产生的模拟MRS信号的参数为E0 = 700mV,T2* = 200ms.对采集到的数据进行数据处理后,得到E0 = 699.6mV,T2* = 201.3ms,误差均在2%以内。
2、频率偏差测试
测试方法:用MRS信号源产生幅度为0.7V、频率为2325Hz的模拟MRS信号输入到采集模块的输入端,参考信号频率设置分别为2326Hz、2327Hz、2328Hz、2329Hz、2330Hz、2340Hz时,主控软件控制采集。
测试时间、地点:2008.11.24,地质宫337
测试仪器:PC机、MRS信号源
采集时间:256m
s测试结果:如图6.5所示,蓝色曲线为信号波形,黑色曲线为噪声波形。
由测试结果可以看出,与标准正弦波测试一样,输入信号和参考信号的频率偏差会对采集结果造成一定的影响,误差分析结果如表6.2所示
由测试结果以及误差分析可以看出,输入信号和参考信号频率偏差在5Hz以内时,核磁共振信号采集模块工作稳定可靠,而且重复性很好。当频差变大时,T2*的提取受到的影响更大一点,误差也越大。
6.1.4室内测试总结
经过对核磁共振信号采集模块的测试,验证了所设计的采集模块的可行性。通过与所设定的信号参数对比,验证了本采集模块的正确性与提取精度。经测试,本采集模块允许参考信号与输入信号的频率偏差范围在5Hz以内,为野外试验提供了参考。同时通过大量的室内测试,也验证了核磁共振采集模块的稳定性与一致性,为本采集模块的野外试验做好了充足的准备。
6.2野外试验结果
采集模块测试通过后,与JLMRS找水系统相结合,进行了大量的野外试验。图6.6所示为在长春烧锅镇一个测点发射电流分别为23A、28A、42A、56A时并叠加24次时的信号和噪声波形,蓝色曲线为信号波形,黑色曲线为噪声波形。
经过数据处理,得到的参数提取结果如表6.3所示。
试验得到该测点在发射电流为23A时,信号幅度最大,对应的地层含水量最大。
可见,本采集模块在野外试验中取得了良好的效果,具有很强的实用性。
上一篇:一种新型的宽阻带共面带状线低通滤波器
下一篇:基于网络的分布控制式半导体激光器阵列
推荐阅读最新更新时间:2023-10-12 22:50
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- Vicor高性能电源模块助力低空航空电子设备和 EVTOL的发展
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- 柔灵科技陈涵:将小型、柔性的脑机接口睡眠设备,做到千家万户
- 微灵医疗李骁健:脑机接口技术正在开启意识与AI融合的新纪元
- USB Type-C® 和 USB Power Delivery:专为扩展功率范围和电池供电型系统而设计
- 景昱医疗耿东:脑机接口DBS治疗技术已实现国产替代
- 首都医科大学王长明:针对癫痫的数字疗法已进入使用阶段
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- 兆易创新GD25/55全系列车规级SPI NOR Flash荣获ISO 26262 ASIL D功能安全认证证书
- 新型IsoVu™ 隔离电流探头:为电流测量带来全新维度
- 英飞凌推出简化电机控制开发的ModusToolbox™电机套件
- 意法半导体IO-Link执行器电路板为工业监控和设备厂商带来一站式参考设计