SAR模数转换器的前端器件设计探究

最新更新时间:2015-03-14来源: 互联网关键字:SAR  模数转换器 手机看文章 扫描二维码
随时随地手机看文章
SAR模数转换器的前端器件包括两个部分:驱动放大器和RC滤波器。放大器调节输入信号,同时充当信号源与ADC输入端之间的低阻抗缓冲器。RC滤波器限制到达ADC输入端的带外噪声,帮助衰减ADC输入端中开关电容的反冲影响。

为SAR ADC选择合适的放大器和RC滤波器可能很困难,特别是当应用不同于ADC数据手册的常规用途时。根据各种影响放大器和RC选择的应用因素,我们提供了设计指南,可实现最佳解决方案。主要考虑因素包括:输入频率、吞吐速率和输入复用。

1 选择合适的RC滤波器

要选择合适的RC滤波器,必须计算单通道或多路复用应用的RC带宽,然后选择R和C的值。

图1显示了一个典型的放大器、单极点RC滤波器和ADC.ADC输入构成驱动电路的开关电容负载。其10 MHz输入带宽意味着需要在宽带宽内保证低噪声以获得良好的信噪比(SNR)。RC网络限制输入信号的带宽,并降低放大器和上游电路馈入ADC的噪声量。不过,带宽限制过多会延长建立时间并使输入信号失真。

 

 

图1. 典型放大器、RC滤波器和ADC

在建立ADC输入和通过优化带宽限制噪声时所需的最小RC值,可以由假设通过指数方式建立阶跃输入来计算。要计算阶跃大小,需要知道输入信号频率、幅度和ADC转换时间。转换时间tCONV(图2)是指容性DAC从输入端断开并执行位判断以产生数字代码所需的时间。转换时间结束时,保存前一样本电荷的容性DAC切换回输入端。此阶跃变化代表输入信号在这段时间的变化量。此阶跃建立所需的时间称为“反向建立时间”.

 

 

图2. N位ADC的典型时序图

在给定输入频率下,一个正弦波信号的最大不失真变化率可通过下式计算:

 

 

如果ADC的转换速率大大超出最大输入频率,则转换期间输入电压的最大变化量为:

 

 

这是容性DAC切换回采集模式时出现的最大电压阶跃。然后,DAC电容与外部电容的并联组合会衰减此阶跃。因此,外部电容必须相对较大,达到几nF.此分析假设输入开关导通电阻的影响可忽略不计。现在需要建立的阶跃大小为:

 

 

接下来计算在ADC采集阶段,ADC输入建立至½LSB的时间常数。假设阶跃输入以指数方式建立,则所需RC时间常数τ为:

 

 

其中, tACQ 为采集时间, NTC 为建立所需的时间常数数目。所需的时间常数数目可以通过计算阶跃大小 VSTEP, 与建立误差(本例为½LSB)之比的自然对数来获得:

 

 

因此,

 

 

将上式代入前面的公式可得:

 

 

等效RC带宽 =

 

示例: 借助RC带宽计算公式,选择16位ADC AD7980 (如图3所示),其转换时间为710 ns,吞吐速率为1 MSPS,采用5 V基准电压。最大目标输入频率为100 kHz.计算此频率时的最大阶跃:

 

 

然后,外部电容的电荷会衰减此阶跃。使用27 pF的DAC电容并假设外部电容为2.7 nF,则衰减系数约为101.将这些值代入 VSTEP 计算公式:

 

 

接下来计算建立至½LSB(16位、5 V基准电压)的时间常数数目:

 

 

采集时间为:

 

 

计算τ:

 

 

因此,带宽为3.11 MHz, REXT 为 18.9 Ω.

 

 

图3. 采用16位1 MSPS ADC AD7980的RC滤波器

最小带宽、吞吐速率和输入频率之间的这种关系说明:输入频率越高,则要求RC带宽越高。同样,吞吐速率越高,则采集时间越短,从而提高RC带宽。采集时间对所需带宽的影响最大;如果采集时间加倍(降低吞吐速率),所需带宽将减半。此简化分析未包括二阶电荷反冲效应,它在低频时变成主要影响因素。输入频率非常低时(<10 kHz,包括DC),容性DAC上建立的始终是大约100 mV的电压阶跃。此数值应作为上述分析的最小电压阶跃。

多路复用 输入信号很少是连续的,通常由不同通道切换产生的大阶跃组成。最差情况下,一个通道处于负满量程,而下一个通道则处于正满量程(见图4)。这种情况下,当多路复用器切换通道时,阶跃大小将是ADC的满量程,对于上例而言是5 V.

 

 

图4. 多路复用设置

在上例中使用多路复用输入时,线性响应所需的滤波器带宽将提高到3.93 MHz(此时阶跃大小为5 V,而非单通道时的1.115 V)。假设条件如下:多路复用器在转换开始后不久即切换(图5),放大器和RC正向建立时间足以使输入电容在采集开始前稳定下来。

 

 

图5. 多路复用时序

对于计算得到的RC带宽,可以利用表1进行检查。从表中可知,要使满量程阶跃建立至16位,需要11个时间常数(如表1)。对于计算的RC,滤波器的正向建立时间为11 × 40.49 ns = 445 ns,远少于转换时间710 ns.正向建立不需要全部发生在转换期间(容性DAC切换到输入端之前),但正向和反向建立时间之和不应超过所需的吞吐速率。对于低频输入,信号的变化率低得多,因此正向建立并不十分重要。表1. 建立至N位分辨率所需的时间常数数目

 

 

计算出滤波器近似带宽后,就可以分别选择 REXT 和 CEXT 的值。上述计算假设 CEXT = 2.7 nF,这是数据手册所示应用电路的典型值。如果选择较大的电容,则当容性DAC切换回输入端时,对反冲的衰减幅度会更大。然而,电容越大,驱动放大器就越有可能变得不稳定,特别是给定带宽下 REXT 值较小时。如果 REXT 值太小,放大器相位裕量会降低,可能导致放大器输出发生响铃振荡或变得不稳定。对于串联 REXT较小的负载,应采用低输出阻抗的放大器来驱动。可以利用RC组合和放大器的波特图执行稳定性分析,以便验证相位裕量是否充足。最好选择1 nF至3 nF的电容值和合理的电阻值,以使驱动放大器保持稳定。此外务必使用低电压系数的电容,如NP0型,以保持低失真。

REXT 的值必须能使失真水平保持在要求的范围以内。图6显示了驱动电路电阻对失真的影响与 AD7690输入频率的函数关系。失真随着输入频率和源电阻的提高而提高。导致这种失真的原因主要是容性DAC提供的阻抗的非线性特性。

 

 

图6. 源电阻对THD的影响与输入频率的关系

低输入频率(<10 kHz)可以支持较大的串联电阻值。失真还与输入信号幅度有关;对于同一失真水平,较低的幅度可以支持较高的电阻值。计算上例中的 REXT :τ = 51.16 ns,假设 CEXT 为2.7 nF,得到电阻值为18.9 Ω。这些值接近ADI数据手册应用部分给出的常见值。

此处计算的标称RC值是有用的指南,但不是最终解决方案。选择 REXT 与 CEXT 之间的适当平衡点,需要了解输入频率范围、放大器可以驱动多大的电容以及可接受的失真水平。为了优化RC值,必须利用实际的硬件进行试验,从而实现最佳性能。

2 选择合适的放大器

在上一部分中,我们根据输入信号和ADC吞吐速率,计算了适合ADC输入的RC带宽。接下来必须利用此信息选择合适的ADC驱动放大器。需要考虑如下方面:

·放大器大小信号带宽

·建立时间

·放大器噪声特性以及对系统噪声的影响

·失真

·失真对于电源轨的裕量要求

该数据手册通常会给出放大器的 小信号带宽 .但是,根据输入信号的类型,大信号带宽 可能更重要,尤其是高输入频率(>100 kHz)或多路复用应用(因为电压摆幅较大),而且输入信号的正向建立更加关键。例如,ADA4841-1 的小信号带宽为80 MHz(20 mV p-p信号),但大信号带宽仅3 MHz(2 V p-p信号)。上例采用AD7980,计算的RC带宽为3.11 MHz.对于较低的输入频率,ADA4841-1是很好的选择,因为其80 MHz小信号带宽对于反向建立而言绰绰有余,但在多路复用应用中则有困难,因为对于大信号摆幅,此时的RC带宽要求提高到3.93 MHz.这种情况下,更合适的放大器是ADA4897-1,它具有30 MHz的大信号带宽。一般而言,放大器的小/大信号带宽至少应比RC带宽大两三倍,具体取决于是以反向建立还是正向建立为主。如果要求放大器级提供电压增益(这会降低可用带宽),更适用这条原则,甚至可能需要带宽更宽的放大器。

看待正向建立要求的另一种方式是查看放大器的建立时间特性,它通常是指建立到额定阶跃大小某一百分比所需的时间。对于16位到18位性能,通常要求建立到0.001%,但大多数放大器仅指定不同阶跃大小的0.1%或0.01%建立时间。因此,为了确定建立特性是否支持ADC吞吐速率,需要对这些数值进行折中。ADA4841-1针对8 V阶跃给出的0.01%建立时间为1 μs.在驱动1 MSPS(1 μs周期)AD7980的多路复用应用中,它将无法使满量程阶跃的输入及时建立,但如果降低吞吐速率,例如500 kSPS可能是可行的。

RC带宽对于确定放大器的最大容许噪声量十分重要。放大器噪声一般通过低频1/f噪声(0.1 Hz至10 Hz)和高频时的宽带噪声谱密度(图7所示噪声曲线的平坦部分)来规定。

 

 

图7. ADA4084-2电压噪声与频率的关系

折合到ADC输入端的总噪声可以按照如下方法计算。首先,计算放大器宽带频谱密度在RC带宽上的噪声。

 

 

其中, en = 噪声频谱密度(V/Hz), N = 放大器电路噪声增益, BWRC = R带宽(Hz)

然后,通常通过下式计算低频1/f噪声;它通常指定为峰峰值,需要转换为均方根值。

 

 

其中,

= 1/f峰峰值噪声电压,N = 放大器电路噪声增益。

 

总噪声为以上两个噪声的和方根:

 

 

为将驱动器噪声对总SNR的影响降至最低,此总噪声应为ADC噪声的1/10左右。根据目标系统的SNR要求,可能还允许更高的噪声。例如,如果ADC的SNR为91 dB, VREF= 5 V,则总噪声应小于或等于

 

 

由此值很容易算出1/f噪声和宽带噪声谱密度的最大允许值。假设拟用的放大器具有可忽略不计的1/f噪声,以单位增益工作,并采用RC带宽为上例计算值(3.11 MHz)的滤波器,那么

 

 

因此,该放大器的宽带噪声谱密度必须小于或等于2.26 nV/√Hz.ADA4841-1的宽带噪声谱密度为2.1 nV/√Hz,符合这一要求。

放大器需要考虑的另一个重要特性是特定输入频率时的失真。通常,为获得最佳性能,16位ADC需要大约100 dB的总谐波失真(THD),18位ADC需要大约110 dB.图8显示对于2 V p-p输入信号,ADA4841-1的典型失真与频率的关系图。

 

 

图8. ADA4841-1的失真与频率的关系

图中显示的不是总谐波失真,而是一般最为重要的二次和三次谐波成分。ADA4841-1的噪声非常小,失真特性优异,足以驱动18位ADC到大约30 kHz.当输入频率接近100 kHz或更高时,失真性能开始下降。为在高频时实现低失真,需要使用功耗更高、带宽更宽的放大器。较大的信号也会降低性能。对于0 V至5 V的ADC输入,失真性能信号范围将提高到5 V p-p.从图8所示的失真图可看出,这将产生不同的性能,因此放大器可能需要测试,以确保它满足要求。图9比较了多个输出电压水平的失真性能。

 

 

图9. 不同输出电压水平下失真与频率的关系

裕量,即放大器最大实际输入/输出摆幅与正负电轨之差,也可能影响THD.放大器可能具有轨到轨输入和/或输出,或者要求最高1 V甚至更大的裕量。即便是轨到轨输入/输出,如果工作信号电平接近放大器的供电轨,也将难以获得良好的失真性能。因此,最好应选择让最大输入/输出信号远离供电轨的电源电平。考虑一个0 V至5 V输入范围的ADC,采用ADA4841-1放大器驱动,需要将ADC的范围提高到最大。该放大器具有轨到轨输出,对输入有1 V的裕量要求。如果用作单位增益放大器,则至少需要1 V的输入裕量,正电源至少必须是6 V.输出为轨到轨,但仍然只能驱动到地或正供电轨的大约25 mV范围内,因而需要一个负供电轨,以便一直驱动到地。为了给失真性能留有一定的裕量,负供电轨可以是-1 V.

如果允许降低ADC输入范围,从而丧失一定的SNR,则可以消除负电源。例如,如果ADC的输入范围降为0.5 V至5 V,此10%损失将导致SNR降低大约1 dB.然而,这样就可以将负供电轨接地,从而消除用以产生负电源的电路,降低功耗和成本。

3 结语

因此,选择放大器时,务必考虑输入和输出信号范围要求,以便确定所需的电源电压。本例中,额定工作电压为5 V的放大器不能满足要求;但ADA4841-1的额定电压高达12 V,所以使用较高的电源电压将能实现出色的性能,并提供充足的电源裕量。

关键字:SAR  模数转换器 编辑:探路者 引用地址: SAR模数转换器的前端器件设计探究

上一篇:解读二极管浪涌电流测试电路
下一篇:零欧姆电阻的十二种作用

推荐阅读最新更新时间:2023-10-12 22:53

stm32cubemx 多路adc采集
采用的软件是STM32CUBEMX+KEIL5 硬件为stm32F103C8T6 我与原文作者做的区别在于 External Trigger Conversion Edge,我在进行配置的时间没有None选项,我选择的是默认的Regular Conversion launched by software 原文地址: http://www.eemaker.com/stm32cubemxadc.html 实现功能:stm32cubeMX配置ADC多通道采集(非dma和中断方式) Stm32ADC的转换模式还是很灵活,很强大,模式种类很多,那么这也导致很多人使用的时候没细心研究参考手册的情况下容易混淆。不知道该用哪种方
[单片机]
stm32cubemx 多路<font color='red'>adc</font>采集
模数转换器时钟优化:测试工程观点
系统时钟优化可以提升系统的性能,但也颇具挑战性。为模数转换器设计抖动为350飞秒(fs)的编码电路是相对容易的,但这是否能够满足当今的高速需求?例如,测试AD9446-100 1 (16 bit 100 MHz ADC)时,在Nyquist区使用100 MHz的采样时钟频率,350 fs的抖动将使信噪比(SNR)下降约3 dB。如果在第三Nyquist域中使用105 MHz的模拟输入信号测试相同的设备,SNR下降可达10 dB。为了将时钟抖动减少到100 fs或更少,设计者需要理解时钟抖动来自哪里,以及ADC能够允许多大的抖动。如果在电路设计完成后才发现时钟电路性能受抖动的限制,并且在设计阶段中本可以很容易地避免该问题发生,这时已
[模拟电子]
<font color='red'>模数转换器</font>时钟优化:测试工程观点
采用赛灵思Kintex-7开发板和NXP ADC1443D200的FMC演示视频
采用赛灵思Kintex-7开发板和恩智浦(NXP) ADC1443D200的FMC演示视频
[嵌入式]
使用一款简单的解决方案吸收电流峰值和噪声
当您在系统中使用一个 8 到 14 位模数转换器 (ADC) 时,理解转换器的电压参考通路至关重要。 图 1 所示为一款可适应 ADC 参考输入动态的电路。图中,电压参考芯片为转换过程和电容器 C L1 提供 电压基底 ( voltage-foundation),旨在吸收 ADC 的内部参考电路 电流峰值和滤波器参考噪声。本电路中,不仅仅降低电压参考噪声很重要,对内部电压参考放大器稳定性进行平衡也很重要。     图 1 在参考和 ADC 之间安装有低通滤波器的 8 到 14 位模数转换器的串联电压参考电路   利用该电路解决噪声问题时,ADC 传输函数(方程式 1 )表明了电压参考噪
[电源管理]
使用一款简单的解决方案吸收电流峰值和噪声
STM32-ADC认识
一、ADC配置的基本步骤: 1、打开DMA和ADC1的时钟。 在RCC_Configuration()中添加: RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); 2、配置模拟IO输入口 在GPIO_Configuration()中配置 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //ADC0 -light GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
[单片机]
51单片机—ADC0808—05—①
早晚也是闲着没事情做~~干脆就发点简单的东西,毕竟所谓的复杂就是一堆简单的堆出来的~~~究其根本,没有什么复杂的~ 毕竟ADC这个东西用的比较多,也很成熟,做出来的东西也是挺多的,所以这个东东就用两三个实验来叙述吧~ 先说一下ADC0808 这款A/D转换器的介绍: 1、ADC0808的简介 A/D转换器是一种能把输入模拟电压或者电流信息变成与其成正比的数字量信息的电路芯片。A/D转换器用于实现模拟量到数字量的转换。 ADC0808是典型的8通道模拟输入8位并行数字输出的逐次逼近式A/D转换器。该转换器采用COMS工艺,可以实现8路模拟信号的分时采集。片内有8路模拟选通开关,以及相应的通道地址锁存用译码
[单片机]
51单片机—<font color='red'>ADC</font>0808—05—①
TI推出业界最小 12、14 及 16 位 SAR ADC
最新 ADC 进一步推进工业监控及控制应用的尺寸、功耗与性能达到最优配比。 2014 年 9 月22 日,北京讯---日前,德州仪器 (TI) 宣布推出最新逐次逼近寄存器 (SAR) 模数转换器 (ADC),可帮助系统设计人员缩小工业监控及控制应用的尺寸。此次推出的 ADS7042 是业界最小、功耗最低的12 位 SAR ADC,而 ADS8354 系列则包含业界最小的 14 及 16 位同步采样 SAR ADC。 ADS7042 1-MSPS ADS7042 可推进实现尺寸与功耗优化的最优配比。这款微型器件全速功耗仅为 690uW,且可在采样速率达到前所未有水平的情况下,依然可以为超低功耗系统降
[模拟电子]
CTDS ADC 在医疗超声系统中的应用
  至今,设计人员都面对ADC选择的折衷考虑。流水线转换器提供高分辨率和宽动态范围,但其功耗相当高。另一种方法,分立时间Δ∑转换器几乎不需要太大的功率,但严格受速度所限。   CTDS ADC   连续时间Δ∑(CTDS)技术可填补转换器的空白。Xignal公司最近推出的产品可工作在40Msample/s(相当于流水线转换器的50~60Msample/s),具有12位或14位分辨率、高功能集成度(包含精确的片上时钟源),其功耗仅70mW。此产品也具有1个电阻输入级,这很容易驱动,而不用借助缓冲放大器。   图1示出CTDS ADC 与流水线转换器相对性能比较,此图是根据IEEE认可的FOM(性能因数)测量。FOM
[医疗电子]
CTDS <font color='red'>ADC</font> 在医疗超声系统中的应用
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved