技术文章—ISSCC 2019论文解析:功率放大器篇

最新更新时间:2019-03-04来源: haikun01关键字:功率放大器 手机看文章 扫描二维码
随时随地手机看文章

ISSCC2019论文解析目录:

1、Session 6 Ultra-High-Speed Wireline

2、Session 4 Power Amplifiers

 

今天来看ISSCC 2019的第四个session: 功率放大器(Power Amplifiers)。

 

image.png

 

功率放大器是每年ISSCC必有的一个传统Session,今年也不例外。

 

今年这个session一共有9篇论文,与上一篇文章提到的高速接口不同,这9篇论文全部来自于学术界。至少有两个原因:第一,功率放大器的设计不需要16nm或7nm FinFET这样的先进工艺,不管是射频还是毫米波频段,65nm或40nm的CMOS工艺足够了,而且先进工艺的电源电压降低,功率放大器的性能反而受到影响。第二,学术界不必过多关注可靠性,可以得到更好的性能指标。可靠性和最优性能指标是一个trade-off。

 

学术界的朋友可以好好看看这个session,说不定能找到一些启发。

 

既然说到工艺,这里还要插入一句,为了把整个系统集成在同一颗芯片之上,迟早会有采用FinFET工艺设计功率放大器的需求的。那现在这些功率放大器技术,有哪些可以沿用到FinFET工艺?有哪些变得不那么有效?FinFET工艺的功率放大器又会哪些独特的挑战?这或许可以成为一个研究方向。

 

言归正传。从内容来看,今年功率放大器的最大关注点是回退效率(power back-off efficiency),有一半的论文在针对这一点做提高。其他几篇论文关注点是功率合成、太赫兹、超宽带等等。

 

在具体看每篇论文之前,我这次先介绍一下功率放大器的回退效率的背景知识,方便大家理解这些论文在解决什么技术难点。

 

为什么要关注回退效率呢?

 

现在的通信系统为了充分利用频谱资源,都会采用很复杂的调制方式,如64QAM等等,信息同时蕴含在调制信号的相位和包络幅度之中。这对功率放大器的线性度提出了要求,设想我传递给功率放大器一个有四个电平的包络信号,假如功率放大器是完全非线性,发射出来的包络幅度全变成一样,那其中包含的信息就不可能找回来了。因此功率放大器必须工作在饱和输出功率回退若干dB的地方,以避免非线性造成信号失真。

 

下面这两页PPT很好的说明了这个背景。

 

image.png

 

image.png

 

那怎样才能提高功率放大器的回退效率呢?

 

想象一个简单的A类功率放大器,当输出功率减小时,由于偏置点不变,晶体管的直流电流不变,电源电压不变,因此消耗的功率不变。输出功率减小,消耗功率不变,因此效率会急剧下降。从这里我们可以看到改善回退效率的本质因素:当输出功率减小时,同步减小功率放大器消耗的直流功率。

 

不就是减小直流功耗嘛,听起来很容易的样子。我先说一个很naive的想法:在功率回退时,我们同步降低电源电压,可以吗?

 

可以,很多人就是这样做的,所谓的Envelope Tracking技术就是这个从这个概念出发的。往年的ISSCC有不少采用这个技术的论文,但今年没有。简单的说,Envelope Tracking技术先从调制信号中提取出包络的幅度信息,然后用这个幅度信息去控制功率放大器的电源电压,使得输出功率小时电源电压降低,从而提高回退效率。

 

image.png

 

听起来很美好,但这个技术有一个本质的缺陷和两个不好克服的技术难点。

 

本质的缺陷是速度。我们在设计功率放大器时,一般都希望有一个稳定的电源电压,需要滤波电容进行滤波,即使不额外加滤波电容,功率放大器电源端的寄生电容本来就已经非常大了。这恰好与Envelope Tracking的技术相违背,一个要求电源电压稳定,一个要求电源电压能快速变化。因此,Envelope Tracking技术没法支持快速变化的包络,调制信号的带宽受到限制,论文里能够实现的码率一般在几十兆。在具体实现上的两个技术难点分别是“怎么控制”——包络环路与相位环路的匹配,以及“怎么调”——高效率的电源调制器(power modulator),我们好不容易把功率放大器的直流功耗降低,可不想这些节省的功耗被消耗在电源整流器上。

 

总的来说,在芯片设计里,电源电压是一个特别难调的量,尤其是需要实时调的时候。电流大,无法容忍开关的插入电阻,电容大,没法快速变化。

 

既然电源电压不好调。那我提第二个naive的想法:在功率回退时,我们同步降低(等效)偏置电压是否可以?

 

当然可以。B类的功率放大器不就是这个概念嘛。B类功率放大器偏置在晶体管的阈值电压,当输入功率减小时,等效的直流偏置点下降,晶体管消耗的直流电流下降。这的确在某种程度上提高了晶体管的功率回退效率。但是还不够。很容易理解,功率放大器的输出功率随着输入电压幅度呈平方关系下降,而直流电流呈线性关系下降,输出功率下降更快,因此回退效率还是不够高。现在大家一般把B类放大器的回退效率曲线作为对比,号称在回退若干dB时,我的效率比B类功率放大器提高了若干倍。如果你做了一个号称可以增强回退效率的功放,结果还打不过B类,那还是不要拿出来讲了……

 

image.png

 

偏置电压继续往下调就成了C类功率放大器,属于非线性功率放大器的范畴。这里再插入一句:A类、B类、C类放大器这些概念可能过于简化,但对我们的思维帮助很大。我们说一个实际放大器工作在B类,并不是说它恰好与教科书里定义的B类完全相同,而是说它的工作状态更像、或者更接近B类,采用B类的模型进行分析更准确。

 

对于单个功率放大器晶体管本身,我们可调的物理量似乎也就电源电压和偏置电压了吧。或与阈值电压也可以调,但Bulk CMOS工艺并没有调阈值电压这个选项,SOI工艺倒是可以。

 

似乎调电源电压和偏置电压都不是那么有效,那么是时候引入第二个辅助功率放大器了。设想我们有两个功率放大器,主放大器偏置在B类或AB类,而辅放大器偏置在C类。这样当输入电压幅度小的时候,C类放大器打不开,只有B类工作,呈现出一个线性功放。当输入电压幅度变大,B类主放大器的增益开始衰减,这时候恰好C类放大器被打开,补偿B类放大器减小的功率,从而提高了整体的线性度,也就提高了相对于最大输出功率的回退效率。

 

写到这里,对这一块熟悉的人应该可以看出来,这已经非常接近doherty功率放大器的概念了。但是doherty还要多一个负载牵引的概念。doherty功放的经典原理图如下图所示。所谓负载牵引,值得是当辅助功率放大器打开之后,它会往负载中注入一个相关的电流,可以使得主功率放大器看到的等效阻抗减小。为什么可以减小不详细解释了,从阻抗的定义可以推导公式。那为什么要做负载牵引呢?对于B类功率放大器,负载阻抗是一个很重要的设计参数,当负载阻抗恰好使漏电电压摆幅接近电源电压时,功率放大器达到最高效率。从这点出发,如果需要大的输出功率,我们需要小的负载阻抗(V**2/R);当所需的输出功率减小时,最优的负载阻抗应该随之同步变大,使得B类放大器总是处于效率最优状态。Doherty功放正是在朝这方面努力。

 

image.png

 

Doherty结构的功放在这几年的ISSCC露脸次数非常多,是功率放大器方向的热门领域。今年也有数篇,我会解析每篇是在解决Doherty中的什么问题。

 

除了上面这些,还有两个提高回退效率的技术,digital功率放大器(配合Polar发射机使用)和Out phasing功率放大器。与Envelope Tracking类似,Digital功率放大器也把调制信号分为相位和幅度两个支路,但幅度支路采用数字的方式控制功率放大器子单元阵列的开关数目,这样避免了去动很难调的电源电压,可实现更大的带宽,在我看来是个比envelope tracking更具备潜力的技术。DPA也面对幅度和相位支路匹配的问题,但不需要经过慢速的电源调制模块,应该比envelope tracking更好控制。而Out phasing功率放大器是通过改变两个功率放大器的输出信号矢量角度来改变整体输出功率,类似于矢量合成的概念,其在回退效率上的好处应该也是来源于回退时的阻抗调制。如果采用隔离型功率合成器,out phasing功率放大器相对于普通B类功率放大器在回退效率上没有优势。

 

一不小心背景知识介绍的有点多,但把这些背景知识串起来又对理解论文很有必要。具体的论文解析只能等到下周再写了。

 


关键字:功率放大器 编辑:muyan 引用地址:技术文章—ISSCC 2019论文解析:功率放大器篇

上一篇:技术文章—深入理解热焊盘与反焊盘
下一篇:运用虚短和虚断解决运算放大器问题

推荐阅读最新更新时间:2023-10-12 23:04

50W-100W功率放大器电路
下面介绍制作简单的50W-100W 电压形式的音响功率放大器 ,该电路属于电压形式的功率放大器,最大优点是制作十分简单!只要按电路图上面的方法,可一次成功。调试方法也很简单。主要调整的元件是:R11、R12、R13调整R11和R12可以静态电流。
[模拟电子]
50W-100W<font color='red'>功率放大器</font>电路
甲类推挽功率放大器效率问题研究
功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。
[模拟电子]
自适应前馈射频功率放大器设计
1.引言   现代无线通信的迅猛发展日益朝着增大信息容量,提高信道的频谱利用率以及提高线性度的方向发展。一方面,人们广泛采用工作于甲乙类状态的大功率微波晶体管来提高传输功率和利用效率;另一方面,无源器件及有源器件的引入,多载波配置技术的采用等,都将导致输出信号的互调失真。因此,在设计射频功率放大器时,必须对其进行线性化处理,以便使输出信号获得较好的线性度。一般常用的线性化技术包括:功率回退、预失真、前馈等,其中,功率回退技术能有效的改善窄带信号的线性度,而预失真技术和前馈技术,特别是前馈技术,由于其具有高校准精度,高稳定度以及不受带宽限制等优点,成为了改善宽带信号线性度时所采用的主要技术。本文首先简述了普通的前馈线性化技术
[模拟电子]
低频功率放大器
   功率放大是一种能量转换的电路,在输入信号的作用下,晶体管把直流电源的能量,转换的电路,在输入信号的作用下,晶体管把直流电源的能量,转换成随输入信号变化的输出功率送给负载,对功率放大要求如下: (1)输出功率要大:要增加放大器的输出功率,必须使晶体管运行在极限的工作区域附近,由ICM、UCM和PCM决定见图一。 图一 (2)效率η要高:放大器的效率η定义为:η=交流输出功率/直流输入功率 (3)非线性失真在允许范围内:由于功率放大器在大信号下工作,所以非线性失真是难免的,问题是要把失真控制在允许范围内, 功率放大器按
[模拟电子]
高音细腻的120W功率放大器电路图
本文介绍的 功率放大器 ,最大优点就是高音细腻,各种音乐器发出的细微声响均能尽皆重放,使用话筒却无啸叫,而低音振撼有力,舒缓深沉。曲目间歇时嗽叭几乎无声。由于取材容易、性能良好,较适合业余制作。 相信大多数电子爱好者都利用TDA2030A、TDA1514等优秀电路组装过简单的放大器,但是,即使组成大功率的BTL电路去驳接VCD、录音机还是不能使音箱发出足够的声音、这是由于没有装上前置推动级造成的。如果没前置推动,用TDA2030A组成的BTL功放也只能有10W左右的功率输出。但装上前置推动后,最大的输出功率就能够充分发挥出来,就是TDA2030A也能输出震撼人心的音频功率来。 电路原理: 元
[模拟电子]
高音细腻的120W<font color='red'>功率放大器</font>电路图
D类音频功率放大器的环路设计
       D类音频功率放大器具有效率高、功耗低的优点,采用D类音频功率放大器的设备能够提高电池的寿命,它特别适合应用于无线和手持通信设备,主要应用在PDA、移动电话和类似的手持移动通信工具的设计和产品中。而大功率输出的音频设备具有很大的功耗,所以在大功率输出的音频设备中采用低功耗的D类音频功率放大器也是十分必要的,特别在集成了高质量音频性能和扩展了混合能力的同时实现了低功耗。   本文将介绍D类音频功率放大器的环路设计,表明这个D类音频功率放大器具有效率高、功耗低、谐波失真低的特点。     如图1所示,这个音频功率放大器包含一个音频通道,一个振荡器、一个基准电压电流源和一个过流保护电路。这个音频通道包含有一个
[嵌入式]
如何降低射频功率放大器的功耗方案比较
在向着4G手机发展的过程中,便携式系统设计工程师将面临的最大挑战是支持现有的多种移动通信标准,包括GSM、GPRS、EDGE、UMTS、WCDMA和HSDPA,与此同时,要要支持100Mb/s~1Gb/s的数据率以及支持OFDMA调制、支持MIMO天线技术,乃至支持VoWLAN的组网,因此,在射频信号链设计的过程中,如何降低射频功率放大器的功耗及提升效率成为了半导体行业的竞争焦点之一。目前行业发展呈现三条技术路线,本文就这三条技术路线进行简要的比较。   利用超CMOS工艺,从提高集成度来间接提升PA效率   UltraCMOS采用了SOI技术,在绝缘的蓝宝石基片上淀积了一层很薄的硅。类似CMOS,UltraCMOS能
[模拟电子]
如何降低射频<font color='red'>功率放大器</font>的功耗方案比较
170W、D类音频功率放大器LM4651/LM4652
    摘要: LM4651/LM4652是美国国家半导体公司推出的新型集成电路芯片,利用LM4651驱动器与LM4652功率MOSFET两片IC可直接组成高效D类超低音功率放大器。文中介绍了LM4651/LM4652的特点、功能的原理,并重点介绍了由LM4651/LM4652组成的典型应用电路。     关键词: 超低音  D类功率放大器  LM4651/LM4652 利用美国国家半导体公司(NSC)推出的LM4651/LM4652 Overture TM最新IC和很少的外部元件,即可组成170W高效D类音频功率放大器。LM4651的PWM驱动器与LM4652半桥(H-bridge)功率M
[手机便携]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved