对于需要从高输入电压转换到极低输出电压的应用,有不同的解决方案。一个有趣的例子是从48 V转换到3.3 V。这样的规格不仅在信息技术市场的服务器应用中很常见,在电信应用中同样常见。
图1. 通过单一转换步骤将电压从48 V降至3.3 V
如果将一个降压转换器(降压器)用于此单一转换步骤,如图1所示,会出现小占空比的问题。占空比反映导通时间(当主开关导通时)和断开时间(当主开关断开时)之间的关系。降压转换器的占空比由以下公式定义:
当输入电压为48 V而输出电压为3.3 V时,占空比约为7%。
这意味着在1 MHz(每个开关周期为1000 ns)的开关频率下,Q1开关的导通时间仅有70 ns。然后,Q1开关断开930 ns,Q2导通。对于这样的电路,必须选择允许最小导通时间为70 ns或更短的开关稳压器。如果选择这样一种器件,又会有另一个挑战。通常,当以非常小的占空比运行时,降压调节器的高功率转换效率会降低。这是因为可用来在电感中存储能量的时间非常短。电感器需要在较长的关断时间内供电。这通常会导致电路中的峰值电流非常高。为了降低这些电流,L1的电感需要相对较大。这是由于在导通时间内,一个大电压差会施加于图1中的L1两端。
在这个例子中,导通时间内电感两端的电压约为44.7 V,开关节点一侧的电压为48 V,输出端电压为3.3 V。电感电流通过以下公式计算:
如果电感两端有高电压,则固定电感中的电流会在固定时间内上升。为了减小电感峰值电流,需要选择较高的电感值。然而,更高的电感值会增加功率损耗。在这些电压条件下,ADI 的高效率 LTM8027 µModule®稳压器在4 A输出电流时仅实现80%的功率效率。
目前,非常常见且更高效的提高功率效率的电路解决方案是产生一个中间电压。图2显示了一个使用两个高效率降压调节器的级联设置。第一步是将48 V电压转换为12 V,然后在第二转换步骤中将该电压转换为3.3 V。当从48 V降至12 V时,LTM8027 μModule稳压器的总转换效率超过92%。第二转换步骤利用LTM4624将12 V降至3.3 V,转换效率为90%。这种方案的总功率转换效率为83%,比图1中的直接转换效率高出3%。
图2. 电压分两步从48 V降至3.3 V,包括一个12 V中间电压
这可能相当令人惊讶,因为3.3 V输出上的所有功率都需要通过两个独立的开关稳压器电路。图1所示电路的效率较低,原因是占空比较短,导致电感峰值电流较高。
比较单步降压架构与中间总线架构时,除功率效率外,还有很多其他方面需要考虑。但是,本文只打算讨论功率源转换效率的重要方面。这个基本问题的另一种解决方案是采用新型混合降压控制器LTC7821。它将电荷泵动作与降压调节结合在一起。这使得占空比达到2 × VIN/VOUT,因此可以在非常高的功率转换效率下实现非常高的降压比。
中间电压的产生对于提高特定电源的总转换效率可能相当有用。为了提高图1中极小占空比下的转换效率,业界进行了大量开发工作。例如,可以使用非常快速的GaN开关来降低开关损耗,从而提高功率转换效率。然而,这种解决方案的成本目前还高于级联解决方案(例如图2所示)。
关键字:转换器 电源管理 LTM8027
编辑:王磊 引用地址:从48V转换到3.3V,看电源转换器效率
推荐阅读最新更新时间:2023-10-12 23:01
解析模数转换器(ADC)不同类型数字输出
在当今的模数转换器(ADC)领域,ADC制造商主要采用三类数字输出。这三种输出分别是:互补金属氧化物半导体(CMOS)、低压差分信号(LVDS)和电流模式逻辑(CML)。每类输出均基于采样速率、分辨率、输出数据速率和功耗要求,根据其工作方式和在ADC设计中的典型应用方式进行了论述。本文将讨论如何实现这些接口,以及各类输出的实际应用,并探讨选择和使用不同输出时需要注意的事项。此外还会给出关于如何处理这些输出的一般指南,并讨论各类输出的优劣。
基本知识
使用数字接口时,无论何种数字输出,都有一些相同的规则和事项需要考虑。首先,为实现最佳端接,接收器(FPGA或ASIC)端最好使用真正的电阻终端。接收器端的反射可能会破坏系统
[模拟电子]
PIC的A/D转换器
PIC16C7X (除710/71/711以外) 当ADCON1配置为将所有模拟引脚设置为数字I/O时,VREF内部接地。这将导致每次执行模拟转换时, ADRES寄存器均读出0xFF值,这是由于每个输入电压均高于VREF的缘故。
PIC16C7X系列器件之一,发现模拟数字转换结果并不总是准确的。如何才能改善精确度呢?
1. 确信所有定时规范均得到满足。如果您将ADC关闭后打开,应至少等待一个最小延时时间后才可采样;如果您改变输入通道,也应等待一个最小延时;最后是Tad,即为每个位转换所选择的时间。这一时间在ADCON0内做出选择,应在2到6us之间。如果Tad太短,转换结束时,结果尚未被完全转换,而如果Tad太长,转换结束
[单片机]
采用市电供电的LED驱动器
LED的特点是工作电压低,即使是白光LED的工作电压也不会高于4V,相对于有效值220V的交流市电来说,就需要降压或限流。降压是通过工频变压器或高频逆变器将市电降低到与LED工作电压相匹配的电压等级,限流是通过电路的限流特性使得流过LED的电流达到合适的数值。前者是电压匹配,后者是电流匹配。就LED自身应用特性和有利于LED使用寿命而言,无论是电压匹配还是电流匹配最终均需要对电流进行控制,所不同的是电压匹配是将施加到LED的电压控制在LED工作电压数值上,这需要根据LED工作结温进行调节;电流控制方式则只控制流过LED电流值,无须考虑LED的串联数。 实际应用中经常需要多只LED串联应用,串联LED的总工作电压越接近电源电压,驱动器
[电源管理]
电源与电源管理技术发展趋势
Mansour Izadinia 副总裁
未来的DC-DC转换器采用何种技术—模拟还是数字?
未来的电源管理系统对效率和可靠性的要求越来越高,电源管理产品的设计专家就如何提高系统效率和可靠性的问题产生了许多争议。许多专家提议借助数字系统改善效率和可靠性。这无疑对传统的模拟方案提出了挑战,模拟设计人员为了维护模拟设计的地位也提出了不同的观点。我们相信在数字DC-DC转换技术发展成熟之前,有关数字和模拟DC-DC转换器的争议还会持续一段时间。 了解数字电源管理不可混淆的两个方面非常重要,一方面是数字电源管理技术,另一方面是输出电压调节反馈环路的离散时间控制。许多设计人员没有分清这两方面的问题,因而也混淆了真
[新品]
ADC0809AD转换器基本应用技术
1.基本知识
ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1)ADC0809的内部逻辑结构
由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2).
引脚结构
IN0-IN7:8条模拟量输入通道
ADC0809对输入模拟量要求:信
[单片机]
单芯片DC/DC变换器在CPU电源控制系统中
1 引言
CPU 的性能逐年提高,功耗也有增无减。一旦功耗略有减少,CPU的工作电压就趋于下降。现在,CPU的工作电压已经从当初的3.3V降低到1.6V、 0.9V,还可能进一步降低。CPU工作电压的降低,使其与外围电路的工作电压的失配更加明显,因而也增加了CPU工作电压的类别。例如在PⅢ-CPU 中,必须有3种不同的工作电压,需要3个DC-DC变换器,有碍于CPU乃至计算机总体尺寸的进一步缩小和总功耗的进一步降低。日本富士通公司生产的 MB3884型单芯片电源控制集成电路即DC-DC变换器可以满足CPU的不同工作电压和功耗的要求。本文扼要介绍这种电路的结构和特征,以便电脑用户使用。
2 笔记本电脑
[电源管理]
高分辨率液晶显示器电源管理电路的设计方案
1 引言
要实现液晶显示器显示须具备以下4 个单元:控制器(Controller) 、电源管理单元(PMU) 、驱动电路(Driver) 、液晶显示器件(LCD) 。对于分辨率较小的液晶显示器件,如128×64、128×32等模块都具有控制器、电源管理单元、驱动器于一体的芯片。但对于高分辨率的液晶显示器(如320×240 ,640×480) 需要单独的控制器、电源管理单元、驱动器。本文给出了一种高分辨率液晶显示器电源管理电路的设计方案。
2 电路设计方案
实现液晶显示须具备4个单元,其框图如图1所示。本文给出的电源管理电路设计方案具有驱动电压产生、时序控制、温度补偿和对比度调节的功能,其框图如图2所示。
[电源管理]
Vicor公司推出采用坚固底盘安装封装的高密度DC-DC转换器
DC-DC转换器的加固型版本DCM系列,提供更好的通用性、散热性能和电源系统经济性
Vicor公司(纳斯达克股票代码:VICR)今天宣布,推出全新、坚固、底盘安装版本DCM 系列产品,它是隔离、稳压DC-DC转换器模块。这些新的转换器具有目前Vicor的DCM技术的所有优势 业界最高功率密度和一流的散热及电学性能 采用坚固的新型封装(VIA封装技术),在转换器安装和冷却方面提供了增强的多功能性。这些 采用VIA封装的DCM 非常适用于广泛的工业、过程控制、汽车、重型设备、通信和国防/航空航天领域。
DCM系列所具有的业界领先的散热性能和电学性能是由Vicor的高效率、软开关ZVS转换技术和Vic
[电源管理]