为最大限度地提高效率,电力公司供应商必须尽量减少发电和客户分布之间的能量损失。这些损失的一部分包括非技术性损失,例如盗电造成的损失。一些最普遍的盗电方法包括篡改电表(e-meter),因为电表相对来说容易找到。
有多种方法可以篡改仪表。除侵入式篡改方法外,还可在不打开仪表外壳的情况下非侵入式地篡改电子仪表。
磁性篡改是非侵入式篡改的最常见形式之一。在仪表附近放置强磁铁,强磁铁可能会使附近的变压器饱和,从而导致它们瘫痪。具体而言,强磁铁可能使电源中的变压器或电流互感器的电流传感器瘫痪,这可能导致用电用户的电费低于他们实际应该交纳的电费。
为应对磁篡改,对策包括尝试使用霍尔效应传感器检测磁场的存在,以及使仪表硬化以防止磁性篡改攻击。为检测磁篡改,三个霍尔效应传感器可检测所有三个维度中强磁铁的存在。当系统备用电源用完时,霍尔效应传感器的平均电流消耗很低至关重要。霍尔效应传感器可通过外部工作循环实现低平均电流消耗,或选择集成此工作循环的霍尔效应传感器。
为硬化电源中的变压器防止磁篡改,一种选择是屏蔽变压器;但是,这只在一定程度上有效。第二种选择是选择足以应对预期的磁篡改攻击的具有完全磁免疫力或磁阻的变压器。对于不会吸收太多电流的系统,第三种选择是使用不带任何磁性元件的电容降电源。
与电源中的变压器类似,为硬化电流互感器以防止磁篡改,可选择屏蔽电流互感器。但是,这只在某种程度上有效。获得磁免疫电流传感的最佳方法是使用分流传感器代替电流互感器。将分流器用于单相仪表相对简单:只需相对于分流器参考系统。对于多相电表,将分流器用作传感器更复杂。由于分流器没有固有的隔离,必须进行外部隔离,以防止连接到分流器的器件上出现大的、破坏性的差分电压。
图1所示为带有隔离式分流传感器的三相系统的功能组件。在该架构中,每相一个独立器件测量分流传感器两侧的电压。这些器件可以是隔离的delta-sigma调制器或计量模拟前端(AFE)微控制器(MCU)。由于分流传感器件是隔离的,因此每个器件必须具有单独的电源。
图1:具有隔离分流传感器的多相系统的功能组件
基于其与分流传感器件通信的能力选择后端器件(如图1所示)。例如,若您将隔离调制器用作分流传感器件,则选择带有数字滤波器的后端器件。这些数字滤波器可构成独立器件的一部分,也可集成在计量MCU中。或者,若您将计量AFE用作分流传感器件,则选择具有串行外设接口或通用异步接收器发送器接口的后端器件。
要计算有功电能,除客户负载的电流外,还需要测量电源电压。电阻分压器通常将电源电压转换为模数转换器可感测的范围。在具有隔离式分流传感器的多相系统中,您可在同一器件上实现电源电压检测,以检测分流器上的电压,或者若器件的电压检测与分流检测同步,则可在后端器件上实现。若后端器件正在感测电压,则无需隔离,因为仍然可在多相上测量电压,而后端器件上没有大的破坏性电压。
为防止后端器件上的危险电压(因为分流器本身不具有隔离功能),有必要将通信与分流传感器件隔离到后端器件。这种隔离可集成在分流传感器件中,也可是单独的数字隔离器器件。
有两种方法可实现隔离分流电流传感。第一种方法,如图2所示,涉及使用计量AFE。在这种方法中,计量AFE计算主要计量(电压、电流、功率等),而非让后端器件执行这些计算。在分流传感器件上计算这些参数减少了后端装置所需的处理,并在计量和主机功能之间提供了良好分离。
图2:使用计量AFE的隔离分流传感器
隔离式分流传感的第二种方法是使分流传感器件仅检测电流,并让计量MCU执行计量计算。图3所示为此方法的一个示例。这种架构的优点是它更容易在相位之间进行参数计算,例如测量不同相位之间的角度。
图3:使用隔离调制器的隔离分流传感器
结论
我们可使用分流电流传感器和电容降电源设计磁免疫电子仪表。
通过遵循这些防篡改技术,可阻止或至少减轻仪表篡改事件,从而在供电时减少效率低下问题。
上一篇:解析数字PFC控制器对电源的重要性
下一篇:这个技术帮助你升压升到足够高
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 电赛2013年G题:手写绘图板
- 具有软启动组件的 LT1308ACS8 5V 至 12V 升压转换器的典型应用电路
- 用于 LED 驱动器的 90W、48V 交流转直流单路输出电源
- TB67S512FTAG 2 相双极步进电机驱动器评估板
- LTC1261LIMS8-4 5V 输入、-0.5V 输出 GaAs FET 偏置发生器的典型应用电路
- 星球灯
- 使用 Analog Devices 的 ADG508A 的参考设计
- 使用 STMicroelectronics 的 LM105 的参考设计
- LTC3615MPFE-1 单路低纹波 6A 输出同步降压型 DC/DC 转换器的典型应用
- TCA62735AFLG 电荷泵 DC-DC 白光 LED 驱动器的典型应用
- 【EE团】抢先体验 ST最新STM32F0308-DISCOVERY开发工具!
- 如何用3个关键步骤,来确保下一代设计安全性,深入解读嵌入式设备DeepCover加密控制器,看视频答题赢好礼!
- TI 技术大咖带你领略独一无二的MCU世界 推荐、抢楼全有礼!
- 亲历易电源——易电源电源模块试用!
- 看是德科技资料填调查问卷赢好礼
- 美信基础模拟IC APP下载 助力您创新模拟设计!
- 【有奖征文】TI DSP 30 周年——聊聊DSP的那些事儿
- 【0元得开发板,还能赢T12焊台,报名倒计时】Follow me,与得捷一起解锁开发板超能力!
- 电子电路经典课程带你开启充电模式!抢楼有礼喽!
- EEWorld下载中心大批技术资料等你来领,还有好礼相助