倒置降压器如何提供非隔离反激器的拓扑选择离线电源是最常见的电源之一,也称为交流电源。随着旨在集成典型家用功能的产品数量的增加,对所需输出能力小于1 瓦的低功率离线转换器的需求也越来越大。对于这些应用程序,最重要的设计方面是效率、集成和低成本。在决定拓扑结构时,反激通常是任何低功耗离线转换器的首选。
但是,如果不需要隔离,这可能不是最好的方法。假设终端设备是一个智能灯开关,用户可以通过智能手机的应用程序进行控制。在这种情况下,用户在操作过程中不会接触到暴露的电压,因此不需要隔离。对于离线电源来说,反激拓扑是一个合理的解决方案,因为它的物料清单(BOM)计数较低,只有少数功率级元件,并且变压器的设计可以处理较宽的输入电压范围。但是,如果设计的终端应用不需要隔离呢?如果是这样的话,考虑到输入是离线的,设计师可能仍然会想要使用反激。带集成场效应晶体管(FET)和初级侧调节的控制器会产生小的反激解决方案。
图1 显示了使用带初级侧调节的UCC28910 反激开关的非隔离反激的示例示意图。虽然这是一个可行的选择,但与具有较低BOM 计数的反激相比,离线倒置降压拓扑将具有更高的效率。在这篇电源管理设计小贴士中,我将探讨用于低功耗AC/DC 转换的倒置降压。
图1 这种使用UCC28910 反激开关的非隔离反激设计可将AC 转换为DC,但离线倒置拓扑可以更有效地完成此项工作。
图2 显示了倒置降压的功率级。像反激一样,它有两个开关元件,一个磁性元件(单电源电感器而不是变压器)和两个电容器。顾名思义,倒置降压拓扑类似于降压转换器。开关在输入电压和接地之间产生一个开关波形,然后由电感电容网络滤除。区别在于输出电压被调节为低于输入电压的电位。即使输出“浮动”在输入电压以下,它仍然可以正常为下游电子器件供电。图2将场效应晶体管放在低侧意味着它可以直接从反激控制器驱动。图3 显示了一个使用UCC28910 反激开关的倒置降压。一对一耦合电感器作为磁开关元件。一次绕组作为功率级电感器。二次绕组向控制器提供定时和输出电压调节信息,并为控制器的局部偏置电源(VDD)电容器充电。
反激拓扑的一个缺点是能量通过变压器传递的方式。这种拓扑在场效应管的接通时间内将能量存储在气隙中,并在场效应管的断开时间内将其传输到次级。实际的变压器在初级侧会有一些漏感。当能量转移到次级侧时,剩余的能量储存在漏感中。这种能量是不可用的,且需要使用齐纳二极管或电阻电容网络进行耗散。在降压拓扑中,漏能通过二极管D7 在场效应管断开期间传递到输出端。这样可以减少组件数量并提高效率。
另一个区别是每个磁性元件的设计和传导损耗。因为一个倒置降压只有一个绕组来传输功率,所以所有的功率传输电流都通过它,这就提供了良好的铜利用率。反激则不具有那么好的铜利用率。当场效应管接通时,电流通过一次绕组而不是二次绕组。当场效应管断开时,电流通过二次绕组而不是一次绕组。因此,更多的能量储存在变压器中,并且在反激设计中利用更多的铜来提供相同的输出功率。
图4 比较了具有相同输入和输出规格的降压电感器和反激变压器的一次和二次绕组的电流波形。降压电感器波形在左侧的单个蓝色框中,反激的一次绕组和二次绕组在右侧的两个红色框中。对于每个波形,传导损耗计算为均方根电流平方乘以绕组电阻。因为降压只有一个绕组,所以磁场中的总传导损耗就是一个绕组的损耗。然而,反激的总传导损耗是一次绕组和二次绕组损耗之和。此外,反激中磁场的物理尺寸将比在类似功率水平下的倒置降压设计更大。任一组件的储能等于? L × IPK2。
对于图4 所示的波形,我计算出倒置降压只需要存储反激所需存储的四分之一的功率,因此,与同等功率的反激设计相比,倒置降压设计的占地面积要小得多。
当不需要隔离时,反激拓扑并不总是低功耗离线应用的最佳解决方案。倒置降压可以提供更高的效率
和更低的BOM 成本,因为您可以使用一个可能更小的变压器/电感器。对于电力电子器件设计人员来说,重要的是要考虑所有可能的拓扑解决方案,以确定最适合给定规格的拓扑。
上一篇:节能易用,加快设计,e络盟新增MPS创新电源解决方案
下一篇:可扩展性的优点:从蜘蛛侠到引脚复用
推荐阅读最新更新时间:2024-10-10 10:37
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- LTC3875 的典型应用——具有低值 DCR 检测和温度补偿的双通道、2 相、同步控制器
- 使用 NXP Semiconductors 的 MC9RS08KA2 的参考设计
- 使用 ON Semiconductor 的 CS5203A-1 的参考设计
- CH340联络信号(RTS DTR)开发板 可驱动OLED
- LTC1266,高精度微处理器电源
- Sheet_2
- 使用 RP40-243.3SFR DC/DC 转换器并根据 EN55022 A 类(单输出)进行 EMC 滤波的典型应用
- LTC3621IMS8E-5 1.2V 输出、同步至 600kHz、强制连续模式同步降压型稳压器的典型应用
- S32RXXXEVB:S32R274和S32R372的评估系统
- 树莓派gpio口标注板