科普文章—详解开关电源的几种拓扑结构

发布者:EEWorld资讯最新更新时间:2020-06-17 来源: EEWORLD关键字:开关电源设计 手机看文章 扫描二维码
随时随地手机看文章

1、基本的脉冲宽度调制波形

 

    这些拓扑结构都与开关式电路有关。

 

基本的脉冲宽度调制波形定义如下:

 

         

 

2、Buck降压

 

            

■把输入降至一个较低的电压。

■可能是最简单的电路。

■电感/电容滤波器滤平开关后的方波。

■输出总是小于或等于输入。

■输入电流不连续 (斩波)。

■输出电流平滑。

 

3、Boost升压

 

            

■把输入升至一个较高的电压。

■与降压一样,但重新安排了电感、开关和二极管。

■输出总是比大于或等于输入(忽略二极管的正向压降)。

■输入电流平滑。

■输出电流不连续 (斩波)。

 

4、Buck-Boost降压-升压

 

            

■电感、开关和二极管的另一种安排方法。

■结合了降压和升压电路的缺点。

■输入电流不连续 (斩波)。

■输出电流也不连续 (斩波)。

■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。

■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

 

5、Flyback反激

 

           

■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。

■输出可以为正或为负,由线圈和二极管的极性决定。

■输出电压可以大于或小于输入电压,由变压器的匝数比决定。

■这是隔离拓扑结构中最简单的

■增加次级绕组和电路可以得到多个输出。

 

6、Forward正激

 

 

 ■降压电路的变压器耦合形式。

■不连续的输入电流,平滑的输出电流。

■因为采用变压器,输出可以大于或小于输入,可以是任何极性。

■增加次级绕组和电路可以获得多个输出。

■在每个开关周期中必须对变压器磁芯去磁。常用的做法是增加一个与初级绕组匝数相同的绕组。

■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

 

7、Two-Transistor Forward双晶体管正激

 

 

 ■两个开关同时工作。

■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。

■主要优点:

■每个开关上的电压永远不会超过输入电压。

■无需对绕组磁道复位。

 

8、Push-Pull推挽

 

  

 ■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。

■良好的变压器磁芯利用率---在两个半周期中都传输功率。

■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

■施加在FET上的电压是输入电压的两倍。

 

9、Half-Bridge半桥

 

 ■较高功率变换器极为常用的拓扑结构。

■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。

■良好的变压器磁芯利用率---在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。

■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

■施加在FET上的电压与输入电压相等。

 

10、Full-Bridge全桥

 

  

 ■较高功率变换器最为常用的拓扑结构。

■开关(FET)以对角对的形式驱动,进行脉冲宽度调制(PWM)以调节输出电压。

■良好的变压器磁芯利用率---在两个半周期中都传输功率。

■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。

■施加在 FETs上的电压与输入电压相等。

■在给定的功率下,初级电流是半桥的一半。

 

11、SEPIC单端初级电感变换器

 

            

■输出电压可以大于或小于输入电压。

■与升压电路一样,输入电流平滑,但是输出电流不连续。

■能量通过电容从输入传输至输出。

■需要两个电感。

 

12、C’uk(Slobodan C’uk的专利)

 

            

■输出反相

■输出电压的幅度可以大于或小于输入。

■输入电流和输出电流都是平滑的。

■能量通过电容从输入传输至输出。

■需要两个电感。

■电感可以耦合获得零纹波电感电流。

 

13、电路工作的细节

 

    下面讲解几种拓扑结构的工作细节    ■降压调整器:    连续导电    临界导电    不连续导电    ■升压调整器 (连续导电)    ■变压器工作    ■反激变压器    ■正激变压器

 

14、Buck-降压调整器-连续导电

 

            

■电感电流连续。

■Vout 是其输入电压 (V1)的均值。

■输出电压为输入电压乘以开关的负荷比 (D)。

■接通时,电感电流从电池流出。

■开关断开时电流流过二极管。

■忽略开关和电感中的损耗, D与负载电流无关。

■降压调整器和其派生电路的特征是:

输入电流不连续 (斩波), 输出电流连续 (平滑)。

 

15、Buck-降压调整器-临界导电

 

            

■电感电流仍然是连续的,只是当开关再次接通时 “达到”零。    这被称为 “临界导电”。    输出电压仍等于输入电压乘以D。

 

16、Buck-降压调整器-不连续导电

 

           

■在这种情况下,电感中的电流在每个周期的一段时间中为零。

■输出电压仍然 (始终)是 v1的平均值。

■输出电压不是输入电压乘以开关的负荷比 (D)。

■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。

 

17、Boost升压调整器

 

           

■输出电压始终大于(或等于)输入电压。

■输入电流连续,输出电流不连续(与降压调整器相反)。

■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情况下:

             

 在本例中,Vin = 5,    Vout = 15, and D = 2/3.    Vout = 15,D = 2/3.

 

18、变压器工作(包括初级电感的作用)

 

             ■变压器看作理想变压器,它的初级(磁化)电感与初级并联。

 

19、反激变压器

 

             ■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。

 

20、Forward 正激变换变压器

 

             ■初级电感很高,因为无需存储能量。

磁化电流 (i1) 流入 “磁化电感”,使磁芯在初级开关断开后去磁 (电压反向)。

 

21、总结

 

■此处回顾了目前开关式电源转换中最常见的电路拓扑结构。

■还有许多拓扑结构,但大多是此处所述拓扑的组合或变形。

■每种拓扑结构包含独特的设计权衡:

施加在开关上的电压

斩波和平滑输入输出电流

绕组的利用率

 

■选择最佳的拓扑结构需要研究:

输入和输出电压范围

电流范围

成本和性能、大小和重量之比 

 

关键字:开关电源设计 引用地址:科普文章—详解开关电源的几种拓扑结构

上一篇: 利用BGA封装的低EMI µModule稳压器可简化设计
下一篇:小尺寸大作为,Empower 全新电源管理IC系列问市

推荐阅读最新更新时间:2024-11-03 08:40

以AT89C51单片机为核心的高频开关电源设计
简介:本系统是多台高频开关电源(1000A/15V)智能模块并联,电源单元和监控单元均以AT89C51单片机为核心,电源单元的均流由监控单元来协调,监控单元既可以与各电源单元通信,也可以与PC通信,实现远程监控。 0 引言 模块化是开关电源的发展趋势,并联运行是电源产品大容量化的一个有效方案,可以通过设计N+l冗余电源系统,实现容量扩展。本系统是多台高频开关电源(1000A/15V)智能模块并联,电源单元和监控单元均以AT89C51单片机为核心,电源单元的均流由监控单元来协调,监控单元既可以与各电源单元通信,也可以与PC通信,实现远程监控。 1 PWM控制电路 TL494是一种性能优良的脉宽调制控制器,TL494由5V基准
[单片机]
以AT89C51单片机为核心的高频<font color='red'>开关电源设计</font>
一种基于PWM软开关模式的开关电源设计方案
主电路分析   这款软 开关电源 采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCS PWM 控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。        图1 1.2kw软开
[电源管理]
一种基于PWM软开关模式的<font color='red'>开关电源设计</font>方案
峰值电流控制的非隔离负电压DC/DC开关电源设计
针对现有非隔离负电压DC/DC开关电源在带负载能力以及输出纹波上的不足,本文提出采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源设计方案,使现在连续电流模式(CCM)下输出电容能始终通过输出电感得到充电。进而有效抑制输出纹波的影响,确保了负电源的高效率工作和带负载能力。实验结果验证了本方案的可行性和有效性。 随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采
[电源管理]
峰值电流控制的非隔离负电压DC/DC<font color='red'>开关电源设计</font>
基于FSDM0565R的反激式开关电源设计
  引言   目前,开关电源以其高性能,高效率(75%,现在单片集成开关电源效率早已达到90%以上),这对解决能源问题起到推波助澜的作用,很多节能电器的电源供给早已被开关电源取代;本文介绍了一种基于 开关电源 芯片FSDM0565R 的三相输入、多输出反激式开关稳压电源。分析了FSDM0565R 的特性和工作原理,并给出了它的设计电路图、实际参数的计算及器件的选取,最后给出了该电源模块的实测波形及测试技术指标。实验结果表明,利用该芯片设计的开关电源具有效率高、体积小、电路简单、输入电压变化范围宽、纹波小等特点。同时解决了工业现场三相输入的问题,具有实际的推广价值。          1.FSDM0565R 的主要性能特点和工作原理
[电源管理]
基于FSDM0565R的反激式<font color='red'>开关电源设计</font>
基于TOPwitchⅡ的单片开关电源设计与实现
传统的线性稳压 电源 有着输出电压稳定度高,纹渡电压小的优点,是一种极其可靠的 电源 。但其缺点是电源效率低,需要使用笨重庞大的工频变压器。为了找到一种新型的电源,人们 20世纪60年代发明了自激振荡推挽晶体管单变压器和直流式推挽双变压器,从而实现了高频转换 控制 电路 ,并由此出现了晶闸管(旧称可控硅)相位 控制 式 开关 电源,而且用分离元件制成了 开关 电源,但终因技术问题,效率不高、开关频率很低,而且 电路 复杂、调试困难,难于推广,其应用也受到极大的限制。直到70年代后期,随着 集成电路 设计与制作技术的进步,大功率硅晶体管耐压提高、二极管反向恢复时间缩短,各种开关电源专用芯片大量问世,最终去掉了工频变压器和低频滤波电
[电源管理]
开关电源设计秘笈之降压/升压设计中降压控制器
电子电路通常都工作在正稳压输出电压下,而这些电压一般都是由降压稳压器来提供的。如果同时还需要负输出电压,那么在降压—升压拓扑中就可以配置相同的降压控制器。负输出电压降压—升压有时称之为负反向,其工作占空比为50%,可提供相当于输入电压但极性相反的输出电压。其可以随着输入电压的波动调节占空比,以“降压”或“升压”输出电压来维持稳压。     图5.1显示了一款精简型降压—升压电路,以及电感上出现的开关电压。这样一来该电路与标准降压转换器的相似性就会顿时明朗起来。实际上,除了输出电压和接地相反以外,它和降压转换器完全一样。这种布局也可用于同步降压转换器。这就是与降压或同步降压转换器端相类似的地方,因为该电路的运行与降压转换器不同。
[电源管理]
<font color='red'>开关电源设计</font>秘笈之降压/升压设计中降压控制器
开关电源设计知识介绍
   1 引言 电子产品,特别是军用稳压 电源 的 设计 是一个系统工程,不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源产品 可靠性 设计的重要性。    2 开关电源 电气可靠性设计    2.1 供电方式的选择   集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能源,可靠性高,容易组成N+1冗余供
[电源管理]
让你一次搞定开关电源设计时PCB布局关键
  目前的交换式稳压器和电源设计更精巧、性能也更强大,但其面临的挑战之一,在于不断加速的开关频率使得PCB设计更加困难。PCB布局正成为区分一个开关电源设计好坏的分水岭。本文将就如何在第一次就实现良好PCB布局提出建议。   以一个将24V降为3.3V的3A交换式稳压器为例。乍看之下,一个10W稳压器不会太困难,所以设计师通常会忍不住直接进入建构阶段。   不过,在采用像美国国家半导体的Webench等设计软件后,我们可观察该构想实际上会遭遇哪些问题。输入上述要求后,Webench会选出该公司‘SimplerSwitcher’系列的LM25576(一款包括3AFET的42V输入组件)。它采用的是带散热垫的TSSOP-20封装。  
[电源管理]
让你一次搞定<font color='red'>开关电源设计</font>时PCB布局关键
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved