信号和数据处理电路的低噪声、高电流、紧凑型DC-DC转换器

发布者:EE小广播最新更新时间:2021-12-24 来源: EEWORLD作者: ADI公司应用工程师 Dong Wang关键字:ADI  信号  数据处理  低噪声  DC-DC  转换器 手机看文章 扫描二维码
随时随地手机看文章

信号和数据处理电路的低噪声、高电流、紧凑型DC-DC转换器解决方案 


简介


现场可编程门阵列(FPGA)、片上系统(SoC)和微处理器等数据处理IC不断扩大在电信、网络、工业、汽车、航空电子和国防系统领域的应用。这些系统的一个共同点是处理能力不断提高,导致原始功率需求相应增加。设计人员很清楚高功率处理器的热管理问题,但可能不会考虑电源的热管理问题。与晶体管封装处理器本身类似,当低内核电压需要高电流时,热问题在最差情况下不可避免——这是所有数据处理系统的总体电源趋势。


DC-DC转换器需求概述:EMI、转换比率、大小和散热考虑


通常,FPGA/SoC/微处理器需要多个电源轨,包括用于外围和辅助电源的5 V、3.3 V和1.8 V,用于DDR4和LPDDR4的1.2 V和1.1 V,以及用于处理核心的0.8 V。产生这些电源轨的DC-DC转换器通常从电池或中间直流母线获取12 V或5 V输入电压。为了将这些电源直流电压降至处理器所需的更低的电压,自然会选用开关模式降压转换器,因为它们在大降压比时效率高。开关模式转换器有数百种类型,但很多都可分为控制器(外部MOSFET)或单片稳压器(内部MOSFET)。我们先来看看前者。


传统控制器解决方案可能不符合要求


传统开关模式控制器IC驱动外部MOSFET,具有外部反馈控制环路补偿元件。由此产生的转换器效率很高且功能多样,同时提供高功率,但所需的分立元件的数量使得设计相对复杂且难以优化。外部开关也会限制开关速度,在空间宝贵的情况下这是一个问题,比如在汽车或航空电子设备环境中,因为较低的开关频率会导致整个元件体积更大。


另一方面,单片稳压器则可以极大地简化设计。本文深入讨论整体解决方案,首先介绍“减小尺寸,同时改善EMI”部分。


不要忽视最小导通和关断时间


另一个重要考虑因素是转换器的最小导通和关断时间,或其在足以从输入电压降至输出电压的占空比下运行的能力。降压比越大,所需最小导通时间越低(也取决于频率)。同样地,最小关断时间对应于压差:在输出电压不再受支持之前输入电压能降到多低。虽然增加开关频率的好处是整体解决方案更小,但最小导通和关断时间会设置工作频率的上限。总之,这些值越低,在设计小尺寸和高功率密度时就有越多的余地。


注意真实的EMI性能


其他噪声敏感器件要安全运行,还需要具备出色的EMI性能。在工业、电信或汽车应用中,电源设计的一个重点是最大限度地减少EMI。为了使复杂的电子系统能够协同工作,不因EMI重叠而产生问题,采用了严格的EMI标准,如CISPR 25和CISPR 32辐射EMI规范。为了满足这些要求,传统电源方法通过减慢开关边缘和降低开关频率来减少EMI——前者降低了效率,提高了散热,而后者降低了功率密度。


降低的开关频率还可能违背CISPR 25标准中的530 kHz至1.8 MHz AM频段EMI要求。可以采用机械减缓技术来降低噪声水平,包括复杂、大尺寸的EMI滤波器或金属屏蔽,但这些技术不但增加了大量成本,而且使电路板空间、元件数量和装配复杂性增加,并进一步使热管理和测试复杂化。这些策略都不能满足小尺寸、高效率和低EMI的要求。


减小尺寸,同时改善EMI、热性能和效率


很明显,电源系统设计已变得十分复杂,这给系统设计人员带来了沉重的负担。为了减轻这种负担,一个好的策略是寻找具有同时解决许多问题功能的电源IC解决方案:降低电路板的复杂性,高效率地工作,最大限度地减少散热,并产生低EMI。可支持多个输出通道的功率IC可进一步简化设计和生产。


开关集成在封装中的单片电源IC可实现其中多个目标。例如,图1所示为完整的双路输出解决方案板,说明了单片稳压器的紧凑简单。此处使用的IC中的集成MOSFET和内置补偿电路只需要几个外部元件。此解决方案的总核心尺寸仅为22 mm × 18 mm,部分通过相对较高的2 MHz开关频率实现。

 

image.png

图1.具有出色EMI性能的紧凑型、高开关频率、高效率解决方案


此电路板的原理图如图2所示。在此解决方案中,转换器使用LT8652S的两个通道,在2 MHz的频率下运行,并在8.5 A下产生3.3 V电压,在8.5 A下产生1.2 V电压。可轻松修改此电路以产生包括3.3 V和1.8 V、3.3 V和1 V等在内的输出组合。或者,为了利用LT8652S的宽输入范围,LT8652S可用作二级转换器,再使用12 V、5 V或3.3 V前置稳压器,以提高总效率和功率密度性能。由于高效率和出色的热管理,LT8652S可同时为每个通道提供8.5 A,17 A用于并行输出,高达12 A用于单通道操作。借助3 V至18 V输入范围,该器件可覆盖FPGA/SoC/微处理器应用的大多数输入电压组合。

 

image.png

图2.使用LT8652S的两个通道的双路输出、2 MHz、3.3 V/8.5 A和1.2 V/8.5 A应用


双路输出、单片稳压器的性能


图3显示了图1所示解决方案的测量效率。对于单通道操作,使用该解决方案,在输入电压为12 V时,3.3 V电源轨的峰值效率达到94%,1.2 V电源轨的峰值效率达到87%。对于双通道操作,LT8652S在12 V输入电压时每个通道达到90%的峰值效率,在8.5 A负载电流时每个通道达到86%的全负载效率。由于关断时间跳过功能,LT8652S的延长占空比接近100%,使用最低输入电压范围调节输出电压。20 ns典型最小导通时间甚至使其可在高开关频率下操作稳压器,直接从12 V电池或直流母线生成小于1 V的输出电压——最终减少整体解决方案大小和成本,同时避免了AM频段。具有集成旁路电容的Silent Switcher® 2技术可防止可能出现的布局或生产问题,从而避免影响出色的台式EMI和效率性能。

 

image.png

图3.具有2 MHz开关频率的单路和双路输出效率


高电流负载的差分电压检测


对于高电流应用,每一英寸PCB线路都会导致大幅压降。对于现代核心电路中需要极窄电压范围的典型低电压、高电流负载,压降会导致严重的问题。LT8652S提供差分输出电压检测功能,允许客户创建开尔文连接,以实现输出电压检测和直接从输出电容进行反馈。它可以校正最高±300 mV的输出接地线路电位。图4显示LT8652S利用差分检测功能对两个通道进行负载调整。

 

image.png

图4.LT8652S使用差分检测功能进行负载调整


监控输出电流


在一些高电流应用中,必须收集输出电流信息来进行遥测和诊断。此外,根据工作温度限制最大输出电流或降低输出电流可防止损坏负载。因此,需要进行恒压、恒流操作以精确调节输出电流。LT8652S使用IMON引脚监控并减少负载的有效调节电流。


当IMON对负载设置调节电流时,可根据IMON和GND之间的电阻来配置IMON以减小此调节电流。负载/电路板温度降额可使用正温度系数热敏电阻来设置。当电路板/负载温度上升时,IMON电压增加。为了减小调节电流,将IMON电压与内部1 V基准电压进行比较以调节占空比。IMON电压可低于1 V,但这样就不会产生影响。图5显示激活IMON电流环路前后的输出电压和负载电流曲线。

 

image.png

图5.LT8652S输出电压和电流曲线


电磁辐射(EMI)


为了使复杂的电子系统能够工作,对单个元件解决方案应用了严格的EMI标准。为了在多个行业中保持一致性,广泛采用了各种标准,如CISPR 32工业标准和CISPR 25汽车标准。为了获得出色的EMI性能,LT8652S在EMI消除设计中采用了领先的Silent Switcher 2技术,并使用集成环路电容以尽量减少有噪天线尺寸。加上集成MOSFET和小尺寸,LT8652S解决方案可提供出色的EMI性能。图6显示图1所示LT8652S标准演示板的EMI测试结果。图6a显示峰值检测器的CISPR 25辐射EMI结果,图6b显示CISPR 32辐射EMI结果。

 

image.png

图6.图1应用电路的辐射EMI测试结果。VIN = 14 V,VOUT1 = 3.3 V/8.5 A,VOUT2 = 1.2 V/8.5 A


可获得更大电流和更好热性能的并联操作


随着数据处理速度的飙升和数据量的倍增,为满足这些需求,FPGA和SoC的能力也随之扩展。电源需要功率,且电源应保持功率密度和性能。然而,不能为了增加功率密度而失去简单性和稳健性的优点。对于要求超过17 A电流能力的处理器系统,可将多个LT8652S并联且错相运行。


图7显示两个并联的转换器可在1 V时提供34 A输出电流。通过将U1的CLKOUT连接至U2的SYNC,使主单元时钟与从单元同步。由此产生的每通道90°相位差减少了输入电流纹波,并将热负载扩散到电路板上。


为确保在稳定状态和启动期间更好的均流,将VC、FB、SNSGND和SS连接在一起。建议使用开尔文连接以获得精确的反馈和抗噪性能。在接地引脚附近将尽可能多的热通孔放置到底层,以改善热性能。输入热回路的陶瓷电容应靠近VIN引脚放置。


由于驾驶条件可能发生剧烈、频繁和快速变化,SoC必须及时适应快速变化的负载,因此,汽车SoC施加的负载瞬态要求可能很难满足。外围电源的负载电流压摆率达100 A/μs,核心电源的压摆率甚至更高,这是很常见的。然而,在快速负载电流压摆率下,必须将电源输出的电压瞬变最小化。>2 MHz的快速开关频率可快速恢复瞬变,且输出电压偏移最小。图7显示利用快速开关频率和稳定动态环路响应的正确的环路补偿元件值。在电路板布局中,最大限度地减少电路输出电容到负载的线路电感也是至关重要的。

 

image.png

图7.适用于SoC应用的4相、1 V/34 A、2 MHz解决方案


 image.png

图8.图7电路的负载瞬态响应


结论


FPGA、SoC和微处理器的处理能力不断提高,原始功率需求也相应增加。随着所需功率电轨数量及其承载能力的增加,必须考虑设计小型电源系统,并加快系统性能。LT8652S是电流模式、8.5 A、18 V同步Silent Switcher 2降压稳压器,输入电压范围为3 V至18 V,适用于从单节锂离子电池到汽车输入的输入源应用。


LT8652S的工作频率范围为300 kHz至3 MHz,使设计人员可尽量减少外部元件尺寸并避免关键频段,如调频广播。Silent Switcher 2技术可保证出色的EMI性能,既不会牺牲开关频率和功率密度,也不会牺牲开关速度和效率。Silent Switcher 2技术还在封装中集成了所有必要的旁路电容,可最大限度地减少布局或生产可能引起的意外EMI,从而简化了设计和生产。


Burst Mode®(突发工作模式)操作将静态电流减少到只有16 μA,同时使输出电压纹波保持在低值。4 mm × 7 mm LQFN封装和极少数外部元件可确保外形紧凑,同时尽量减少解决方案成本。LT8652S的24 mΩ/8 mΩ开关提供超过90%的效率,而可编程欠压闭锁(UVLO)可优化系统性能。输出电压的远程差分检测在整个负载范围内都保持高精度,同时不受线路阻抗的影响,从而最大限度地降低了外部变化造成负载损坏的可能性。其他功能包括内部/外部补偿、软启动、频率折返和热关断保护。


作者简介


Dong Wang是ADI公司的一名电源产品应用工程师,于2013年加入凌力尔特。目前他为非隔离式单芯片降压转换器提供应用支持。Dong Wang对电源管理解决方案和模拟电路有着广泛的兴趣,包括高频电源转换、分布式电源系统、功率因数校正技术、低压高电流转换技术、高频磁集成以及转换器的建模和控制。他毕业于中国杭州浙江大学,获得电气工程博士学位。


关键字:ADI  信号  数据处理  低噪声  DC-DC  转换器 引用地址:信号和数据处理电路的低噪声、高电流、紧凑型DC-DC转换器

上一篇:大联大友尚集团推出基于onsemi产品的65W PD电源适配器方案
下一篇:alpitronic用英飞凌CoolSiC™模块及驱动器 打造50 kW超级充电桩

推荐阅读最新更新时间:2024-10-29 18:29

CEA-Leti开发首款用于压电谐振器 DC-DC 转换的 IC
加州大学圣地亚哥分校和CEA-Leti的科学家共同开发了一种突破性的基于压电的DC-DC转换器,该转换器将所有电源开关统一到单个芯片上,以提高功率密度。这种新的电源拓扑不仅超越了现有拓扑,还融合了压电转换器与电容式DC-DC转换器的优点。 与传统的庞大笨重的电感器相比,该团队开发的电源转换器体积更小。这些设备可广泛应用于各种DC-DC变换场景,包括智能手机、计算机、服务器群以及AR/VR耳机等。 相关研究成果已发表在论文《基于集成双侧串联/并联压电谐振器的20-2.2V DC-DC转换器实现了310%损耗降低》中,该论文于2月20日在旧金山举行的ISSCC 2024会议上发布。 据论文报道:“双侧串联/并联压电谐振器(
[电源管理]
用单片机设计A/D、D/A转换器
1、PIC16C62%26;#215;;系列单片机的特点 PIC16C62%26;#215;系列为RISC精简指令、哈佛结构总线、18个引脚的单片机。具有低功耗、高性能、全静态、35条指令极易编程的特点。OTP 片种的性价比极高。除了具备一般单片机的特点外,PIC16C62%26;#215;系列内部集成了两个模拟比较器和一个4bit的可编程基准电压源(REF)。如果利用该单片机的这些特点,只需几个外围元件就具备A/D与D/A转换功能,且分辨率达到8bit~10bit。价格上的优势使其在工控行业、仪器仪表、家电产品的应用前景极为乐观。 本文以8bit分辨率论证A/D、D/A转换的实现方法,更高分辨率的方案完全
[应用]
嵌入式技术应用表面肌电信号采集仪设计
  表面肌电信号(sEMG信号)是从皮肤表面通过电极引导、放大、显示和记录下来的神经肌肉系统活动时的生物电信号,信号形态具有较大的随机性和不稳定性。它与肌肉的活动状态和功能状态之间存在着不同程度的关联性,因而能在一定的程度上反映神经肌肉的活动,在康复医学领域的肌肉功能*价以及在体育科学中的疲劳判定、运动技术合理性分析等方面均有重要的实用价值。表面肌电信号采集属无创性,操作简单,病人易接受,有着广泛的应用前景。   这里涉及到的便携式肌电采集仪小巧方便,结构简单,性能稳定,可以随身携带,可由电池供电,一般用于运动员的训练中。本文主要介绍表面肌电信号采集仪的软硬件设计与实现。   1 硬件系统总体设计   该系统的控制核心选择Atm
[单片机]
嵌入式技术应用表面肌电<font color='red'>信号</font>采集仪设计
ADI:重塑产业变革 IC要走向系统级与生态级创新
回望2020年尽管疫情对整个产业带来了极大的影响,但也推动了多个行业对应用创新的空前强烈需求,而半导体科技在其中发挥着至关重要的作用。随着2020的翻篇,已经到来的2021仍然处于最坏也最好的时代,机遇与困难并存。半导体企业如何在这一轮大变革时代依然挺立潮头,ADI中国区总裁范建人提供了独有的视角。 产业变革的重塑 毫无疑问,疫情对各行各业的影响是全方位的,在由表及里催生变革。 “工业时代历经百年形成的全球经济体系,因为疫情造成的影响而加速了变革,技术驱动的条件也已经成熟,5G与AI、大数据、云计算带来的大规模应用已经到了即将爆发的奇点时刻,因而垂直行业客户对于连接数字与现实世界的需求前所未有地增加。”范建人表示。 细分来看,
[手机便携]
富士通半导体推出CMOS 转换器解决方案系列之首款28nm ADC 产品
上海,2013年3月18日 –富士通半导体(上海)有限公司今日宣布,高速数据转换器的市场领军供应商富士通半导体欧洲(FSEU)在高速ADC上取得最新突破,这将使得在世界范围内大规模部署单波长100Gbps的光传输系统成为可能。结合富士通在混合信号设计、热设计、功耗优化及高性能封装设计上的专长,可为系统设备商提供基于此ADC的完整SoC ASIC解决方案,在持续增大的带宽和传输流量需求下为全球网络基础设施的亟待升级铺平道路。 对带宽的需求将会使得对100Gbps网络的应用从广域网(数千公里传输距离)扩大到城域网(MAN)领域。城域网的覆盖距离较广域网短,最多几百公里,但其端口密度会更高,因此受机械和散热的制约,要求100Gbps
[模拟电子]
富士通半导体推出CMOS <font color='red'>转换器</font>解决方案系列之首款28nm ADC 产品
DC-DC电路多种调制方式的介绍及对比
  直流与直流之间的变换主要指一种直流电流的电压值到另一种电压值的电能转换。DC-DC作为一种小型的 电源 开关模块,能够很大程度上简化设计周期,加速电源电路的设计效率。在DC-DC电源当中有三种最常见的电路调制方式,本篇文章就对这三种调制方式进行了介绍以及比较,并对这三种调制方式的优缺点进行了阐述。首先我们来看一下这三种调制方式的示意图。    1 PWM方式   PWM方式,可称之为定频调宽,即开关频率保持恒定,而通过改变在每一个周期内的驱动信号的占空比来达到调制的目的,这是最常用的一种调制方式。当输出电压发生变化时,通过环路的控制,便会使驱动信号的占空比发生改变,从而维持输出电压的恒定。   作为最常用的调制方式,PWM
[电源管理]
<font color='red'>DC-DC</font>电路多种调制方式的介绍及对比
LDO和DC-DC的区别及优缺点?怎么选择
LDO是低压降的意思,这有一段说明:低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,这些是它的突出优点。它需要的外接元件也很少,通常只需要一两个旁路电容。新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,静态电流6μA,电压降只有100mV。 DC-DC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DC-DC转换器,包括LDO。但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DC-DC。 LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。P沟道MOSFET是电压驱动的,不需要电流
[模拟电子]
工程师:基于接收前端三级低噪声放大器的设计
在现代雷达接收机中,应用最广的结构是超外差结构。在该结构中,单片系统往往需要片外滤波器去除镜像信号,例如SAW滤波器,因而给系统的集成度带来影响。为了达到一定的镜像抑制比,而又不使用片外滤波器,通常使用镜像抑制混频器能提供60 dB左右的抑制度。但现代雷达接收机至少需要80 dB的抑制度,这就给镜像抑制混频器的设计增加了难度。 为解决该问题,研究工作主要集中在镜像抑制LNA的设计上。从文献中,可以看到通过LNA与陷波滤波器(notch filter)的连接,其单片LNA的抑制度分别达到20 dB和75 dB。本文结合雷达接收机中LNA的指标,通过设计电路结构提高抑制度,与后级的镜像抑制混频器连接达到了较高的镜像抑制比,提高了整个雷
[电源管理]
工程师:基于接收前端三级<font color='red'>低噪声</font>放大器的设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved