一种新型双极型LDO线性稳压器的设计

最新更新时间:2006-11-10来源: 现代电子技术关键字:放大  微电流  偏置 手机看文章 扫描二维码
随时随地手机看文章

  随着电子产品的不断发展,电源管理解决方案不断追求高效率、小占位面积、低成本,这使得低压降(LDO,LowDropout)线性稳压器越来越受欢迎。应用于电池供电的产品中,低漏失电压特性保证了电池使用效率高,而且效率将随着电池电压的下降而上升;低静态电流特性保证了电池使用时间长。本文中设计的LDO线性稳压器,典型情况下100 mA负载时漏失电压为180 mV,静态电流为800μA,空载时漏失电压仅为5 mV,静态电流为35μA;而且设置了使能开关引脚,在使能开关引脚被拉低时,稳压器处于休眠模式,此时静态电流<1μA;另外,该稳压器还具有过温、过流保护功能。

  1 电路拓扑结构

  该稳压器包括启动电路、恒流源偏置单元、使能电路、调整元件、基准源、误差放大器、反馈电阻网络,保护电路等。为了实现LDO特性稳压器调整元件采用一种自由集电极的纵向PNP管,过温过流保护电路也采用了特殊的结构。电路拓扑结构如图1所示。

  基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:

  

  如果使能脚处于低电平,电路将处于休眠状态。

  

  2 启动电路、恒流源偏置电路和使能开关电路

  启动电路是为了使恒流源偏置电路开始工作,从而给整个电路建立正常的工作点。使能高电位临界值设为1.4 V,使能低电位临界值设为0.5 V。当使能电压VEN>1.4 V时,电流源给基准源和误差放大器提供偏置,电路处于稳压工作状态;当使能电压VEN<0.5 V时,启动电路将使电流源关闭,基准源和误差放大器的偏置电流为零,导致整个电路处于截至状态,此时电路的静态电流将会很小(<1μA),这种状态就称为稳压器休眠模式。根据上述原理,这部分的电路设计如图2所示。

  

  Q14,Q15,R9,R8构成的微电流源作为启动电路,大电阻R9确保很小的引脚电流(一般为几μA),Q14使电流源启动,Q5使误差放大器、调整管等电路启动。横向PNP晶体管Q7,Q8组成的电流镜给基准源提供偏置,而与调整管同类型的Q2则是给误差放大器提供电流偏置。使能开关电路由横向PNP晶体管Q9A和Q9B组成,Q6使Q9B的发射极电位为VREF+0.7 V=1.93 V;而Q9A的发射极电位为VFB+0.7 V=1.93V。这样当VEN>1.4 V时,Q9A和Q9B完全截至,使能电路失去作用,电路正常稳压工作;同理由Q15可决定稳压器休眠模式时,VEN<0.5 V。

  3 调整管

  如图3所示LDO线性稳压器简化的结构图,稳压器的静态工作电流(Iq)主要由调整管的基极驱动电流决定,该值越小,则稳压器自身消耗的电流越小,电源电流转换的效率就越高;漏失电压(VDROP)指输出电压在容差范围内的最小输入输出压差,该值越小,则电源电压转换效率越高。对于采用PNP调整管的LDO线性稳压器,Iq≈IDRV=IO/β(β为PNP的电流放大倍数),VDROP=VSAT(VSAT为PNP的饱和压降)[1]。由于在现有工艺下,一般横向PNP的电流放大倍数为50左右,参数漂移较大;VSAT的性能也不好。此设计采用了某工艺下一种自由集电极的纵向PNP,标准单管在集电极电流为-100μA、集电极与发射极压差为-5 V时,β为160,上下漂移50;在集电极电流为-100μA、集电极与基极电流比为10时,VSAT为30 mV左右。因此这种自由集电极的纵向PNP非常适合作调整管。单管的版图剖面结构如图4所示。漏失电压和静态电流电流特性如图5、图6所示。

  

  

  

  

  4 基准电路

  由式(1)可知,基准电压对于LDO线性稳压器来说是至关重要的。本设计采用了输出为1.23 V高精度、低温度系数的带隙基准源结构,这也表征了稳压器输出也会有高精度、低温度系数特性。根据双极型带隙基准电路的基本原理[2,4],设计的带隙基准源结构如图7所示。

  

 Q15,Q18,R13构成VT(VT=KT/q,称为热电压)发生器,Q19,Q16和Q17构成的电流源精确地保证Q15和Q18的集电极电流相等。Q15,Q18的发射区面积比为1/10,则他们的结饱和电流IS之比为1/10,因此Q15,Q18的BE结压差ΔVBE为:

  

  其中:VBE为负温度系数,VT为正温度系数。

  

  

  

  5 误差放大器

  电压调整率和负载调整率是稳压器重要的质量参数,他们分别表示了输入电压变化、输出负载变化稳压器维持输出在规定值上的能力。根据LDO线性稳压器的基本原理[1,3],他们与误差放大器的直流开环增益成反比。因此误差放大器的跨导越大,稳压器的电压调整率和负载调整率性能越好。另外从图1中可知误差放大器的输出电流直接驱动PNP管,所以误差放大器必须能够提供足够大的输出驱动电流,并且输出驱动电流必须能跟随负载的变化,该误差放大器的偏置电流源也必须能随着负载的变化,而误差放大器本身必须在负载变化时,仍处于放大状态,保持强烈的负反馈从而实现稳定的输出。

  根据以上所述,本文给出如图10所示的设计电路,误差放大器输出电流在小电阻R6上的压降控制Q4的动态负载,当稳压器输出负载电流增大,则误差放大器输出电流增大,R18上的压降升高,而使动态负载增大,这样才能给调整管提供更大的驱动电流。此设计的误差放大器的差分输入对管与调整管同为自由集电极的纵向PNP,这使误差放大器具有高传输跨导,低输入失调[5]。

  

  6 过温过流保护电路

  过温过流保护电路对于LDO线性稳压器来说是必要的。当稳压器工作温度超过允许的最高结温时,过温保护电路使稳压器停止工作,从而不产生功耗,实现了降温,防止了稳压器烧坏;当稳压器因短路或其他原因使输出电流过大时,过流保护电路使稳压器迅速减流,以防因电流过大而使稳压器损坏。本设计中稳压器最高工作温度为125℃,输出限制电流为200 mA,电路形式如图11所示。常温下,Q12的BE结电压被设为低于他的导通压降,当温度升高时,NPN管的导通压降以约2 mV/℃下降,因此A点电位随着温度的升高而不断升高,直到Q12管导通,此时误差放大器的偏置电流,全被拉向Q12,这样误差放大器将停止工作而使调整管无驱动,输出为零。

  

 过流保护电路与过温保护电路有点类似,在稳压器的工作电流范围内,Q11截至,当稳压器输出电流增大到200 mA时,此时调整管的基极电流将达到2 mA,电流检测电阻R7上的压降将使Q11导通,形成负反馈,把输出电流限制在这个值上。

  7 结 语

  LDO线性稳压器主要应用于便携式的电子产品中,而且日益广泛。CMOS型的LDO线性稳压器也正在发展中,但是他存在着CMOS工艺本身带来的弱点,而且由于PMOS调整管有较大的栅极寄生电容,使得稳定性补偿不易控制。本文从稳压器的拓扑结构入手,对每个模块都进行了详细的分析和设计,采用某双极工艺,实现的LDO线性稳压器具有低漏失电压、低静态电流特性,将具有很好的应用前景。

关键字:放大  微电流  偏置 编辑: 引用地址:一种新型双极型LDO线性稳压器的设计

上一篇:低压差线性稳压器(LDO)浅谈
下一篇:大电流便携式DC/DC变换中MOSFET功耗的计算

推荐阅读最新更新时间:2023-10-18 14:33

善用放大器进行模拟IC极限性能设计优化
数十年来,微波设计人员在设计中一直运用优化方法来提高和集中电路的性能。得益于过去十年间开发出的一些新技术,现在模拟IC设计人员也能够很容易地建立并高效地在其设计上进行优化。   不同于以往的电路优化器必需主要在批模式 (batch mode)下进行单调冗长的设置和运行,这些更新颖的解决方案是专门设计用来使电路设计创建阶段的设置和交互式使用更加便捷轻松。虽然许多解决方案只包含一种算法,但有些工具现在可提供许多的优化算法和方法,可根据问题的实际情况和设计空间宽度来予以具体运用。其中许多算法是从一个用户定义初始点开始,在设计空间进行搜索寻找局部最优点。另外还有一些方法则能够搜索整个设计空间寻找全局最优点。   让我们来分析一
[模拟电子]
双高速低噪声运算放大器AD8022
   1 概述   AD8022由两个低噪声的高速电压反馈放大器组成。它的两个输入端产生的电压噪声只有2.5nV/√Hz。同时具有带宽宽,失真小等特性。当驱动电容负载时,AD8022具有较高的输出电流和较好的稳定性。它的功耗较小,在5V到±12V的电源下工作时,每个放大器仅消耗4.0mA的静态电流。 AD8022采用8脚microSOIC和SOIC封装。由于其过电压恢复时间短,带宽宽,所以它可以作为非对称数字用户线(ADSL: Asymmetric Digital Subscriber Line)、超高速数字用户线(VDSL:Very-high-data-rate Digital Sub-scriber Line)以及其它x
[模拟电子]
由光耦组成的模拟信号放大电路的设计
iframe style="POSITION: absolute; TOP: 0px; LEFT: 0px" id=google_ads_frame2 height=280 marginHeight=0 src="http://googleads.g.doubleclick.net/pagead/ads?client=ca-pub-1728267113733206&output=html&h=280&slotname=6802727683&w=336&lmt=1290931745&flash=10.1.102.64&url=http%3A%2F%2Fwww.epdoc.cn%2Fdianyuan%2F55268.html&dt=
[模拟电子]
不断超越 勇攀高峰 记QUAD 909MONO后级放大
人家说英国有个雾都——伦敦,所以英国出产的音响器材也会带点雾都的特色“有 D 蒙查查”,如果此话放在 5 年前,或许我会赞同,但现今的新派英国器材早已不是那么回事了。你看历史超过 70 年的老牌音箱厂家乐富豪,现在所出品的音箱如 OPUS 、 EVO 、钻石 9 系列等等产品,有哪款还是那种雾里看花的感觉呢?笔者全听过了,这些产品不仅拥有极好的清晰度,而且在保留了传统优秀技术的前提下,融入了诸如弧面箱体、宽频球顶软膜中音技术、防弹纤维振膜等等现代领先的技术,使这些产品在拥有优秀品质的同时与价廉物美同在 ! 享誉英伦的 QUAD 将近 70 年历史的英国老牌音响厂家 QUAD (国都),也拥有相似的发展历程,同样以不断创新的
[模拟电子]
分享一款260W功率音频放大器电路
该260W功率音频放大器电路是一款中等功率放大器,具有足够远的音频范围。这款 260W 功率音频放大器电路能够以 8 瓦有效值的功率燃烧 260 欧姆扬声器。 第一个音频输入信号将由由晶体管BC556C组成的差分放大器放大。进一步的增益将在下一阶段继续,由晶体管BD139组成的驱动器部分。驱动器部分用于加强来自第一级放大器的信号,以使信号电平足以驱动末级放大器。 放大电路中的所有现有晶体管都应安装在散热器上,BC556C晶体管除外。散热片功能是防止在运行过程中因热量而过热。除了防止过热外,还增加了散热器接地的功能,以防止不必要的噪音进入。 该 260W 功率音频放大器电路需要对称电压 +/- 45VDC,每个通道电流为
[嵌入式]
分享一款260W功率音频<font color='red'>放大</font>器电路
立体声耳机放大器设计挑战暨“真实接地”方案
  为了满足消费者对耳机音频质量更高的要求,手机、GPS和MP3播放器等便携消费类设备需要高质量的立体声耳机放大器。而设计人员在设计立体声耳机放大器输出段时,需要从桥接负载、电容耦合、虚拟接地及真实接地等不同选择中选出更适合的方案。   这些不同的输出段设计选择各有其优缺点,如桥接负载的动态范围较大,支持单电源工作,但不兼容立体声耳机;电容耦合兼容立体声耳机,同时支持单电源工作,却存在需要大电容及高通滤波等问题;虚拟接地也支持单电源,无需耦合电容,但若有麦克风,就不兼容立体声耳机。   相比较而言,真实接地输出设计体现出更多的应用优势,如支持立体声耳机,无需大解耦电容,从而节省电路板空间及避免大电容可能较贵的成本,改善
[模拟电子]
TI TLV915x运算放大器以及12位 ADC贸泽开售
专注于引入新品并提供海量库存的电子元器件分销商贸泽电子 (Mouser Electronics) 即日起开始备货TI TLV915x运算放大器和ADS7128 12位模数转换器 (ADC)。此运算放大器和ADC尺寸小巧,拥有出色的精度和性能,搭配使用时可支持各种工业应用,包括工厂自动化、测试与测量设备以及数据采集系统。 贸泽备货的TI TLV915x是低失调电压、低噪声运算放大器,拥有出色的直流精度和交流性能。此16V通用器件具有低失调电压、低温漂、轨到轨输出以及4.5 MHz带宽。此低噪声运算放大器具有宽差分输入电压范围、±75 mA 高输出电流和20 V/µs 高压摆率,成为了工业以及高侧和低侧电流检测应用的理想之选
[模拟电子]
TI TLV915x运算<font color='red'>放大</font>器以及12位 ADC贸泽开售
KWIK电路常见问题解答 放大具有大直流偏移的交流信号以用于低功耗设计
简介 此KWIK(Know-how With Integrated Knowledge——技术诀窍与综合知识)电路应用笔记提供了应对特定设计挑战的分步指南。本文将讨论与特定应用相关的要求,如何利用通用公式进行转换,以及如何轻松地将其扩展到其他相关的应用规格。 在电磁流量计或生物电测量等应用中,小差分信号与大得多的差分偏移串联。这些偏移通常会限制您在前端可以获取的增益,降低整体动态范围,尤其是在使用电池供电的较低电源电压的信号链上。 本指南将帮助您设计一个低功耗、交流耦合信号调理电路,该电路既能抑制大偏移电压,又能放大小的差分信号。此外,本指南将有助于围绕高通滤波器的增益级的划分以及噪声考虑因素。 设计规格示例 图
[模拟电子]
KWIK电路常见问题解答  <font color='red'>放大</font>具有大直流偏移的交流信号以用于低功耗设计
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved