基于HPWM技术的大功率正弦超声波逆变电源

最新更新时间:2007-03-26来源: 电力电子技术关键字:脉冲  可调  方波  频率 手机看文章 扫描二维码
随时随地手机看文章
1 引 言

大功率超声波装置除用于工业清洗外,还在医疗、军事、石油换能器技术,以及海洋探测与开发、减噪防振系统、智能机器人、波动采油等高技术领域有着广泛的应用前景[1]。超声波装置由超声波逆变电源和换能器组成。近年来,由于新型稀土功能材料的开发和研制成功,使制造大功率超声波换能器成为可能,但与之配套的高频正弦逆变电源产品尚为少见。目前,市场上的大功率正弦逆变电源均为采用IGBT制成的中低频产品[2],而高频逆变电源大多数是方波电源或占空比可调的脉冲逆变电源。因此,高频大功率正弦逆变电源已成为超声波应用的瓶颈,使得对该电源的研制已成为急待解决的问题。这里,应用混合脉宽调制(Hybrid Pulse Width Modulation,HPWM)控制技术,采用MOSFET并联运行方式,应用单片机组成智能控制系统,对高性能、大功率正弦超声波逆变电源的研制进行了研究。

2 系统构成

用于高性能、大功率正弦超声波的逆变电源,其频率为25kHz,功率为4.5kW。电压要求在0~200V之间可调,频率要求在10~25kHz之间可调。

2.1 方案的设计

图1示出该逆变电源的系统硬件构成框图[3]。它由AC/DC和DC/AC两大部分组成。包含有交-直-交主电路、驱动电路、单片机控制系统、低通滤波器、显示及保护等主要环节。

主电路由220V市电直接供电。单相交流电压经晶闸管恒流恒压控制模块将交流转换为直流,为逆变器提供恒定的直流电压。

为了使逆变能得到性能和波形比较好的正弦输出,需要有较大的载波比。由于其载波信号将达400~600kHz,因此只能选用MOSFET作为开关器件。但是,MOSFET的输出功率较小,为了增大输出功率,可采用MOSFET并联运行的方式来解决高频与大功率间的矛盾。

逆变部分采用频率恒定的三角载波信号与输入的正弦波进行异步调制。控制方式采用HPWM技术.将直流电压逆变成一系列等幅的脉冲信号。其脉冲信号的幅度和脉宽始终与调制正弦波成正比。这些脉冲信号经低通滤波器将高频载波信号滤除后.即可得到与调制波同频的正弦波输出。因此只要改变输入的调制波,就可容易地实现幅度可调的变频正弦波输出。

2.2 单片机控制系统

该电源采用专为控制逆变器设计的80C196MC单片机作为逆变的控制核心[4,5]。80C196MC单片机内部的波形发生器WFG,占用CPU时间非常短.可由P6口直接输出4路PWM信号用于逆变器的驱动。由80C196MC和EPROM2764构成最小微机系统.将完成超声波频率和电压大小的给定.以及载波频率的设定,并模拟输出单极性正弦波恒幅脉宽调制HPWM信号。可实现电压幅度和频率的显示.以及电源的保护控制。

2.3 逆变主电路及HPWM控制方式

在高频下运行时,功率管的开关损耗极大.器件易于损坏,限制了功率的提高。该电源的关键技术难题是在高频条件下,如何得到大功率的变频正弦波输出。即逆变器的难点是如何降低开关管的开关损耗,使du/dt及di/dt应力大为下降,以实现高频逆变。为了达到这些目的。逆变主电路采用了易于实现软开关技术的单相全桥拓扑结构.在控制方式中采用了HPWM控制方式。图2示出逆变器的主电路拓扑。图3示出4个开关管的驱动信号及逆变器的输出信号。

HPWM控制方式的实质仍属于单极性SPWM控制方式。逆变桥输出端得到的是三态输出电压波、形。在输出电压的正半周,正弦调制波与三角载波交/截产生的脉冲信号控制VS1和VS3桥臂高频互补通断;控制VS2和VS4桥臂低频互补通断,即VS2关断,VS4导通。在输出电压的负半周,两桥臂的工作状态互换。VS1一直关断,VS3一直导通,VS2和VS4高频调制工作。HPWM控制方式中总有两个功率管工作在低频情况下,在总体上减少了开关损耗,这对于在高频下提高功率是极为有利的。与一般的SPWM控制方式相比。HPWM方式下两个桥臂交替工作于低频和高频状态,使两个桥臂工作对称,功率管工作状态均衡,这将延长功率管的使用寿命,使整个电路的可靠性增加,具有电压利用率高,谐波含量小,开关损耗低的优点。由于每个开关管都并联了电容,在滤波电感参数选择适当的情况下,电路很容易实现开关管的零电压通断(ZVS),使du/dt及di/dt应力大为下降,完全可以实现高频大功率逆变。

2.4 驱动电路

开关管的驱动电路可采用最新的LM5111驱动器。它采用SOIC-8脚封装,并为输入和输出级提供独立的接地及参考电压管脚,以便支持采用分开供电设计的门极驱动配置。LM5111芯片的峰值输出电流高达5A,LM5111的两条5A电流驱动通道可各自独立,也可并行连接,将峰值输出驱动电流提高至10A,以便能以极高的效率驱动极大的功率MOSFET。 LM5111的工作频率高达1MHz,其开通、关断延迟小,分别为12ns和14ns。完全能满足该电源的要求。

3 软件实现

3.1 主程序

图4示出主程序流程图。它包含初始化子程序、HPWM信号产生子程序、键盘扫描和显示子程序。初始化子程序中,80C196MC对堆栈地址及载波频率等参数进行初始化,并对单片机本身的各个I/O端口、中断及波形发生器等设定工作方式。可通过键盘给定所需输出的正弦波频率,由显示程序进行显示。显示子程序可对电压信号进行定时采样,A/D转换后,动态、分时显示正弦波的频率和幅度值。

3.2 HPWM信号产生子程序

HPWM是由正弦调制波与等幅的三角载波相比较产生的。波形发生器在中心对准方式下,WG—COUNTER的计数过程形成了一个虚拟的三角波载波。正弦调制波可通过查表方法实现。由于输出HPWM波具有对称性,因此只需建立0°~180°的正弦函数表。为了达到足够的分辨率,正弦函数表中每隔0.15°安排一个采样点,每个数据具有15位二进制数值,占2个字节,输出正弦波半个周期中共取1200项数据,存放在起始地址为SIGN的存储区中。设载波频率为fc,输出频率为fo,则每半个输出正弦波周期中需要N=fc/fo个交点值,第i个交点所对应的正弦调制波幅值可通过查表得到,其地址为SIGN+1200i/N。

将三角载波与交点处的正弦调制波幅值相比,以获得逆变器的HPWM开关模式。每当三角波载波的顶峰(WG—COUNTER=WG—RELOAD)或谷底时,向单片机发出中断请求,进行数据的装载。如此进行,每半个周期交换两相,得到混合单极性调制方式的HPWM波。图5示出HPWM信号产生子程序流程图。

4 实验结果

采用上述主电路结构、控制方式,研制了输出频率为25kHz;载波频率为600kHz;输出功率为4.5kW的原理样机。图6a,b示出感性半载和感性满载时的滤波电感电流iL和输出电压uo实验波形。由图可知,在半载和满载时,uo的变化较小,有较好的负载调整率。图6c,d示出逆变桥同一个桥臂两个功率管VS2和VS4的驱动电压ugsVS2和ugsVS4及其放大了的ugsVS2和ugsVS4实验波形。可见,考虑到死区,同一桥臂的两个功率管是互补导通的。功率管的驱动电压波形的上升和下降延迟时间都非常短,能够满足要求。

5 结论

采用单片机智能控制系统的大功率超声波电源,可实现电源频率和输出电压的人工设定。单片机模拟输出的HPWM信号可简化硬件电路,大大提高系统的功率因数和效率;同时运用了HPWM控制方式与ZVS谐振软开关技术,降低了开关管的损耗,抑制了高次谐波,减小了换能器的损耗。实验表明,所提出的电源性能优良,调节方便,可靠性高。可为大功率超声波换能器在各个领域的应用提供性能优良的超声波电源。

关键字:脉冲  可调  方波  频率 编辑: 引用地址:基于HPWM技术的大功率正弦超声波逆变电源

上一篇:基于DSP的蓄电池充放电装置研究
下一篇:开关电源保护电路的研究

推荐阅读最新更新时间:2023-10-18 14:38

基于CDCE949的可控频率源设计与实现
调频发射机发射频率的改变大都是通过调节压控振荡器(VCO)来实现的。为实现调频发射机的远程控制化、频率的变化由微控制器来决定。系统采用频率点对点广播,而通过控制VCO的变化来改变频率不够灵活。通过本振信号源和基带信号混频来实现音频信号的调制和发射,这样设计一款可由单片机控制的频率源就成为可控调频发射系统的核心技术。 频率合成芯片CDCE949正能满足可控频率源的参数和性能,本文用单片机的两线串行接口(TWI)向CDCE949的控制寄存器写内容,来对输出频率进行控制。 1 频率合成技术及主要技术指标 1.1 频率合成技术 频率合成是指由一个或多个频率稳定度和精确度很高的参考信号源通过频率域的线性运算,产生具有同样稳定度和精
[单片机]
基于CDCE949的可控<font color='red'>频率</font>源设计与实现
STM32F4更换不同频率的晶振后,代码需要做的更改
晶振由25Mhz更换为50Mhz,代码需要做两个更改,如下: 1.“stm32f4xx.h” 修改 #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)25000000) #endif 为 #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)50000000) #endif 2.“system_stm32f4xx.c” 修改 #if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx) || def
[单片机]
基于SoPC的步进电机多轴控制器
步进电机是一种完全数字化的电动执行机构,从原理上说,其角位移与驱动脉冲的个数成正比,在正常情况下,步进电机具有使用简单、运动精确、连续运行无累积误差等特点,因而被广泛应用于各种位置控制系统中。当前由于仪器内部的机械系统日益复杂,其运动往往是多自由度的,因而通常需要利用多个步进电机的运动合成来实现系统的各种动作。例如,对图1所示的半自动生化分析仪的取样针移位系统,该系统的动作执行就是由两部分组成的:一是固定基座上的步进电机控制取样横臂进行垂直方向上的升降运动;二是滑块上的步进电机控制取样横臂进行水平方向上的旋转运动。这两个运动的合成实现了取样横臂的位置变换。 传统的步进电机多轴控制器是以微控制器(MCU)/微处理器(MP
[应用]
STM32F4_TIM输入波形捕获(脉冲频率
Ⅰ、概述 本文在前面文章“STM32基本的计数原理”的基础上进行拓展,讲述关于“定时器输入捕获”的功能,和上一篇文章“定时器比较输出”区别还是挺大的。在引脚上刚好相反:一个输入、一个输出。 本文只使用一个TIM5通道3(也可其他通道)捕获输入脉冲的频率,通过捕获两次输入脉冲的间隔时间来计算脉冲波形的频率。间隔一定时间读取频率并通过串口打印出来。 当然也可通过两路通道捕获脉冲信号的占空比,计划后期整理。 笔者通过信号发生器产生信号,上位机串口助手显示捕获的脉冲频率。(没有信号发生器的朋友可以结合上一篇文章PWM输出做信号源:在同一块板子上也可以使用不同定时器,将输出引脚接在输入引脚) 先看一下实例的实验现象:
[单片机]
STM32F4_TIM输入波形捕获(<font color='red'>脉冲</font><font color='red'>频率</font>)
一种实用的逆变桥功率开关管门极关断箝位电路
不间断电源(Uninterrupted Power Supply,简称UPS)是一种稳频、稳压、纯净、不间断的高质量电源,随着电子和电器设备对电网质量要求的不断增高,它已经成为许多重要场合必备的辅助电源。 1 逆变电路及其控制 正弦脉宽调制(SPWM)技术在逆变器的控制中得到了广泛应用,正弦脉宽调制方式很多,在此不一一描述。本电路采用的是倍频式的调制方式,下面简单加以介绍。 全桥逆变电路的基本结构如图1所示。在倍频式调制方式中,四个开关管的门极脉冲信号Vg1~Vg4的产生方法如图2所示。四个开关管门极脉冲信号Vg1~Vg4与两桥臂中点A、B间电压VAB的波形也如图2所示。 由图2可以看出,在倍频式调制方
[应用]
嫦娥四号捧红国产声光器件,这款声光可调滤光器有啥神奇
嫦娥四号探测器自主着陆在月球背面南极-艾特肯盆地内的冯·卡门撞击坑内,实现人类探测器首次月背软着陆。这是人类第一次揭开古老月背的神秘面纱。 在本次探测任务中,中国电子科技集团重庆声光电公司研制的可见光声光可调滤光器和短波红外声光可调滤光器用于“嫦娥四号”巡视器红外成像光谱仪,实现了国内声光器件在航天领域的首次应用。 声光可调滤光器将配合“嫦娥四号”巡视器红外成像光谱仪,对巡视区月球表面进行红外光谱分析和成像探测,完成对巡视区月球表面矿物组成分布的分析,以及对巡视区能源和矿产资源的综合研究。 声光可调滤光器具有坚固、紧凑、无可移动部件等特点,大幅减小了巡视器平台的体积、重量,具有很好的光谱重复性和自定标特性,易于控制和集
[嵌入式]
电阻频率响应测试实验
目的:测试,电阻,接入不同的频率方波,都会变成什么样子。 设备:电阻,面包板,STM32F103VE 试验板 , 示波器。 方法:将100R,1K,10K,1M电阻,分别以不同形式接入频率为1K,10K,1M,10M,的方波,观察其波形和区别。 电路图:各种接发详见下文。 编译环境:iar 程序方面:采用定时器pwm模式,生成需要的频率以及占空比 #include stm32f10x.h //#include stdio.h #include key.h #include SYSTICK.h void scan(void); void init(void);
[单片机]
电阻<font color='red'>频率</font>响应测试实验
低电压、时间可调语音录/放电路ISD1810
1 主要特点 ISD1810是ISD系列语音录放芯片中的一个新产品,它采用模拟量直接存贮技术,因此保真度高,音质好;能重复录放1万次;信息可保存100年;ISD1810采用单电源3V供电,其录放间隙电路能自动进入省电状态,而维挂电流仅0.5μA。 同时,ISD1810电路还具有四大特点: 第一是电源低,神经质推荐工作电压为+3V(单电源),在低到+2.7V的时仍能正常工作。因而在高档玩具、贺卡以及其它低功耗的应用中有着广阔的市场潜力。 其次是录放时间可调(8~16秒),ISD1810的振荡电阻(Rosc)放到集成电路芯片之外,因此,用户只要简单地改变振荡电阻之值,就能方便地改变采样频率,从而调整录放时间的长短,也就
[嵌入式]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved