利用GM6801实现智能快速充电器设计

最新更新时间:2007-10-12来源: 电子工程专辑关键字:周期  电流  脉冲  安全 手机看文章 扫描二维码
随时随地手机看文章
目前,应用比较广泛的快速充电管理芯片基本上有两种类型。一种是单片机,另一种是快速充电管理专用集成电路。成都国腾微电子有限公司成功开发出一款镍氢/镍镉电池快速充电智能管理芯片——GM6801。该芯片的外部管脚控制功能可编程,无需外部控制器支持,使充电过程检测控制完全自动化,所需外围器件少,应用设计简单。

GM6801应用方案的优势 

GM6801是快速充电管理专用集成电路。与单片机相比,由专用集成电路实现快速充电管理的优势主要体现在几个方面: 

1. 专用集成电路在硬件中集成了对快速充电管理的全部算法,无需开发控制软件,从而有效缩短产品的设计周期,简化设计流程,所需外围器件少,使应用设计变得简单;
2. 采用单片机实现中高端快速充电器时,对单片机有较高要求,比如需要较多的I/O口,需要自带AD等,还要开发相关软件,这样采用单片机所需成本往往较高;
3. 专用集成电路可以实现对快速充电过程的精确控制,比如GM6801就采用了带瞬间放电过程的脉冲充电形式。这样可以在快速充电过程中及时消除大电流造成的电极化效应,使电池充电效果更佳; 
4. 由于快速充电器涉及安全问题,专用集成电路良好的一致性和稳定性相对普通单片机来说更具优势。 

此外,GM6801本身采用一些个性化的设计:GM6801内置10位AD转换器,可以实时采集每节电池的电压和温度信息,自带的“Condition fit”功能能够避免环境变化带来的干扰,保证对快速充电/放电过程的检测判断准确可靠。GM6801对每节电池充电/放电过程的检测判断方法有电压负增长(-ΔV)、最大电压、最大充电时间、最高温度四种方式,通过多参数评估来进行综合判断,以确保电池被最大化充满,同时避免过充,从而延长电池使用寿命。

GM6801自动判断电池有效性、自动识别电池种类,具备超温保护和最大充电时间保护,保证了充电过程的安全性。更完善的功能包括:可直接驱动4个双色LED显示各个电池的状态;可对充电/放电状态进行声音提示;在高温情况下可以自动启动风扇;具备充电/放电状态数据输出功能,可直观显示各个电池的电量。
 
GM6801解决方案设计

GM6801应用方案如图1所示,设计的第一步需要确定智能快速充电器的电源电流。根据充电电池的容量以及想要达到的充电速度,可以计算出快速充电器的电源电流值。 

例如,设计一个针对2,000mAh充电电池的充电器,若需要把充满两节电池的最大时间控制在90分钟以内,那么根据GM6801数据手册中的相关参数可以确定充电时间为1C,由此确定平均充电电流IC=2,000mA。放电电流Idischg由放电回路的电阻值确定,假定放电电流IDISCHG≈1,000mA,再根据GM6801数据手册中的计算公式可以推算出充电器电源的实际电流值为:

ICHG=(IC+IDISCHG/32)×(64/31)=(2,000mA+1,000mA/32)×(64/31)≈4,200mA。 

即设计充电器时,充电器电源电流值应该设计成等于或略大于4,200mA。另外需要强调的是,选择热敏电阻非常重要。

热敏电阻是GM6801应用系统中采集温度的关键元件。在GM6801应用电路中,热敏电阻必须直接或通过导热材料与被测电池紧密接触。热敏电阻的B值=3,300K,热敏电阻的电阻值根据应用电路确定,按照GM6801数据手册中提供的应用电路(如图2所示),热敏电阻(RT)与一个电阻(R)串联,电阻另一端连接+5V电源(Vi),热敏电阻另一端接地,热敏电阻与电阻的连接点引出反应温度变化的电压采样信息(Vt)。 
 

要求在不同的温度点采集到的电压Vt值与GM6801数据手册中提供的数据基本一致,这样才能保证由该热敏电阻网络采集到的电池温度信息与设计中的温度刻度一致。推荐RT和R的标称值都采用27kΩ(25℃时)。 

接下来,需要完成一些控制引脚和输入输出引脚的设定。 

如图3所示,在GM6801的应用电路中,镍氢/镍镉电池选择引脚(NH/ND)与一个外部开关连接,通过开关选择该引脚接高电平或低电平来决定充电电池类型,低电平为镍氢,高电平为镍镉,当该引脚状态改变时,同时具有复位功能;充电/放电选择引脚(CHG/DISCHG)与一个外部开关连接,通过开关选择该引脚接高电平或低电平来决定充电或放电,低电平为充电,高电平为放电;充电时间选择引脚(CHGTIME0/CHGTIME1)分别与外部电路连接,通过设定该引脚接高电平或低电平,由CHGTIME0/CHGTIME1两个引脚的状态决定充电时间(即C值)。 

GM6801系列QFP44封装的芯片采用四路充电/放电回路独立控制,可对最多4节不同型号、容量接近的镍氢/镍镉电池任意组合进行并联充电/放电管理。如图4所示,在应用于四路并联充电/放电控制方式时,GM6801的VCC和Vref通常接+5V,其中Vref要求加10uF旁路电容增加稳定性。工作时钟选用32.768kHz的无源晶振。 

GM6801分别提供充电控制输出、放电控制输出、电池电压采集输入、风扇驱动输出、蜂鸣器输出、双色LED控制输出以及串行数据输出,这些功能管脚的定义和功能分别为:充电控制输出(CHGCTRL1~4)高电平有效,控制对应充电回路开关的打开或关闭;放电控制输出(DISCHG1~4)低电平有效,控制对应放电回路开关的打开或关闭;电池电压采集输入口(CELVOLT1~4)分别与四路充电回路中的一个电池正极相连,用于采集每节电池的电压值;电池温度采集输入口(CELTMP1~4)分别与四个温度传感器中的一个相连,采集相应的电池温度信息;风扇驱动输出(FANDRV)高电平有效,与风扇的正输入脚相连,在一定条件下可直接驱动风扇;蜂鸣器输出(BUZZER)高电平有效,与蜂鸣器的正输入脚相连,在一定条件下可直接驱动蜂鸣器;显示电池充电/放电状态的双色LED控制输出(LED1A/LED1B~LED4A/LED4B)低电平有效,其中LED1A~4A分别与四个双色LED红色极的阴极相连,LED1B~4B分别与四个双色LED绿色极的阴极相连,这四个双色LED采用共阳极的方式;串行数据输出引脚(SERIES_OUT)以串行数据方式实时送出电池的电量信息,用于直观显示电池电量。 

GM6801系列QFP44封装的芯片也可以对串联电池组进行充电/放电管理。在针对串联电池组进行充电/放电控制时,只需要GM6801其中的一路充电/放电控制回路即可实现。

例如:设定对一个四节电池串联的电池组进行充电/放电,采用GM6801的第一个控制回路进行充电/放电管理。 

应用方案如图5所示,在针对串联电池组的充电/放电管理方案中,GM6801控制引脚和输入输出引脚的设定与并联充电/放电管理的不同之处为:电池电压采集输入口(这里取CELVOLT1)通过一个分压电路与串联电池组正极相连,串联电池组的电压值经过分压电路把相当于一节电池的电压值送到电池电压采集输入口(CELVOLT1);原来为了实现自动判断充电/放电回路是否有电池而在电压采集输入口(CELVOLT1)之前加的+5V上拉电路不再适用,去掉该上拉电路后,充电/放电的开始由芯片使能开关控制,当芯片使能开关接通地电位(GND)时,开始充电/放电,充电/放电过程的管理及控制由GM6801自动完成。当芯片使能开关接通+5V时,芯片停止工作。
关键字:周期  电流  脉冲  安全 编辑: 引用地址:利用GM6801实现智能快速充电器设计

上一篇:基于IR2161的低压卤素灯电子变压器
下一篇:数字电源与模拟电源的区别

推荐阅读最新更新时间:2023-10-18 14:39

详解关于电流互感变压器技术要点与选择
电流 互感器原理是依据电磁感应原理的。电流互感器是由闭合的铁心和绕组组成。它的一次绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的2次回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。 长期以来,电流互感 变压器 作为仪器设备中的一种标准器件一直用来测量精密电流。即使在恶劣的环境和高温条件下,这种器件也非常精确,使用方便可靠。 在诸如开关电源、马达电流负载检测、照明及仪器等应用中,电流互感 变压器 一般作为控制、电路保护和监测器件来使用。随着电流互感变压器现货的日益增多,如何选择一款合适的电流互
[电源管理]
基于CAN总线的脉冲电表远程抄表采集模块研究
  1. 引言   脉冲电表是目前电力系统用户侧较为常见的一种电子电量表计。对于远程电子抄表系统,要实现对脉冲表输出脉冲的可靠、精确计量。本文研究探讨了对于脉冲表可靠脉冲捕捉、脉冲计量,特别研究了脉冲电表信号输出线路的断线报警、掉电数据存储等关键问题,并对区域脉冲表群抄表需要的现场总线进行了研究,提出用CAN总线为数据通信的脉冲电表群的模块化解决方案。   2. 脉冲采集模块设计   CH1脉冲采集的主要任务是对CH2 CH3脉冲电表输出脉冲的实时、准确计数,CH4是所有电量统计的基础。脉冲采集模块CH5的好坏直接影响整个系统的可靠性和CH6准确性,因此在整个抄表系统中占据着CH7重要的地位。   2.1 脉冲
[单片机]
基于CAN总线的<font color='red'>脉冲</font>电表远程抄表采集模块研究
电流电压转换电路及仿真
1 引言   本文基于PSPICE和EWB两种仿真软件,分析讨论将微弱电流转换成3-5V电压的电路仿真。   2 PSPICE和EWB软件简介及比较   1) PSPICE软件简介   PSPICE是一种通用的电子电路分析模拟软件,它主要用于在对所分析的电路硬件实现之前,先用计算机对电路进行模拟分析。它以SPICE语言为内核,可以将通过各种途径得到的SPICE语言描述的器件模型加入模型库。PSPICE9.0与传统的SPICE相比较,具有六大功能模块:电路原理图设计模块Capture、核心模块PSPICE A/D、激励信号编辑模块Stimulus Editor、模型参数提取模块、模拟分析和显示模块、优化
[模拟电子]
<font color='red'>电流</font>电压转换电路及仿真
电流信号采集电路图
图 电流信号采集电路图
[模拟电子]
<font color='red'>电流</font>信号采集电路图
锂电池系统技术瓶颈及安全性保障分
电池管理系统(BMS)作为实时监控、自动均衡、智能充放电的电子部件,起到保障安全、延长寿命、估算剩余电量等重要功能,通过一系列的管理和控制,保障电动汽车的正常运行。   据相关统计,2013年全球电池管理系统市场产值成长逾10%,2014年至2016年成长幅度将大幅跃升至25-35%。到2020年前,电动汽车将保持约15%~30%的年复合增长率,除了纯电动汽车、插电式混合动力汽车和混合动力汽车的数量增长之外,新型的48V轻度混合动力系统也将显著促进增长。鉴于此,电子发烧友采访了美国力特公司(Littelfuse)中国区销售总监查勇。   力特公司中国区销售总监查勇表示,要使电池工作在可靠和安全的状态,就必须管理电池的充、放电
[嵌入式]
强流脉冲发生器技术分析
强流脉冲发生器技术分析 合肥光源满能量注入系统升级所需冲击磁铁设计参数分别为注入束流能量800 MeV;偏转角度6.895 mrad;峰值磁感应强度0.096 T;电感0.5H;峰值电流3 100 A;脉冲波形底宽800 ns~3.5us。依据该设计参数对下面几种脉冲发生技术的特点进行分析和电路仿真。 1.1 传输线型 传输线型 脉冲发生器 通过传输线放电产生类矩形波脉冲,它最接近于理想要求的注入脉冲磁场波形。产生脉冲磁场的基本电路见图1。高压直流电源向PFL(脉冲形成线)充电,在注入(引出)时序的控制下闸流管导通,PFL通过传输线对冲击磁铁和终端负载放电,形成矩形脉冲。 假设PFL单元数为Nc
[模拟电子]
强流<font color='red'>脉冲</font>发生器技术分析
一种无频闪无电解电容AC-DC LED 驱动电源中减小LED电流
  1.引言   随着世界各国在逐步禁止进口和销售普通照明白炽灯,新型、绿色、高效、长寿命的LED 照明技术得到了空前的发展 。长寿命是LED 照明的最大优点之一,它的平均使用寿命达到80000- 100000 小时 。对于单级式的LED 驱动电源,如果采用市电供电,为了达到高功率因数(Power Factor, PF),满足IEC61000-3-2的谐波要求 , LED 照明需要一个功率因数校正变换器(Power Factor Correction, PFC)。当功率因数为1 时,输入电流为与输入电压同相位的正弦波,因此其输入功率呈现两倍输入频率的脉动形式,对于恒定输出功率的LED,为了匹配瞬时输入输出功率的不平衡,需要一个
[电源管理]
一种无频闪无电解电容AC-DC LED 驱动电源中减小LED<font color='red'>电流</font>
汽车安全系统中霍尔传感器的使用案例
乘客安全是汽车设计最关键的要素之一。因此,必须一如既往地提高安全系统的可靠性,以减少并最终防止司乘人员在遭遇事故时受到伤害。 安全系统内采用了座椅位置感应技术,以确定乘客相对于方向盘的位置,从而防止安全气囊在用力过度时意外弹出。 目前最常用的解决方案是采用双线单极霍尔效应开关,感应独立的座椅位置区域。传感器 IC 必须以数字输出的形式,将该信息发送到指示特定区域的控制器。当车辆启动时,该信息必须正确,所以传感器 IC 输出必须在无用户操作时解码。 座椅调节导轨通常采用铁类金属材料制成,它们能中断霍尔效应传感器 IC 和磁体之间的磁场。座椅调节导轨的铁类金属会通过开关和磁体之间,导致开关开启或关闭,从而将座椅位置信息发送
[嵌入式]
汽车<font color='red'>安全</font>系统中霍尔传感器的使用案例
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved