基于数字伺服控制器的机载吊舱陀螺稳定平台设计

发布者:素雅之韵最新更新时间:2010-12-23 来源: 电子设计工程关键字:吊舱  陀螺稳定  运动控制  Elmo  whistle 手机看文章 扫描二维码
随时随地手机看文章

    在民用市场,国内现有的机载吊舱陀螺稳定系统大多采用模拟伺服控制器">伺服控制器,存在多方面的缺陷,比如:体积大,笨重,容易产生漂移,不易调整,伺服控制效果不好,无法实现数字通信等,因此无法采用诸如FPGA这样的芯片去处理运动信号,成了性能无法提升的瓶颈,不能很好地满足市场需求。

    Elmo公司的Whistle系列数字伺服控制器,体积小、重量轻、提供数字输入与输出接口,提供RS232与CAN总线2种通信方式,可编程。采用Elmo Whistle数字伺服控制器,通过编程,仅需设计相对简单的一部分外围电路,就能实现很复杂的功能,体现出极大的优越性。但目前国内应用这一控制器来实现机载吊舱陀螺稳定平台的厂家比较少,因此可以借鉴的经验非常有限。本文通过仔细研读Elmo相关文档,设计出了符合性能指标的机载陀螺稳定平台。

1 吊舱及陀螺稳定平台

    吊舱是指悬挂在运动载体(如飞机、船舶)外的舱体有效载荷容器装置。它的作用主要是隔离载机的姿态变化和机械振动对光电传感器指向的影响。吊舱系统由陀螺稳定平台伺服平台、电视跟踪系统、座舱显示和控制系统、红外测量系统、激光测距仪和GPS定位于测距数据链系统、数据采集和记录系统、吊舱环控系统等7部分组成。

    陀螺稳定平台系统主要用于稳定机载吊舱上TV和红外摄像机的视轴稳定,消除直升飞机飞行过程中由于摇摆带来的干扰力矩。这里设计的平台属于二轴四框架系统,分为方位轴和俯仰轴。在每一个轴上安装一个单自由度的光纤陀螺,用来感应干扰力矩。陀螺输出信号经过放大滤波后,送到Elmo伺服控制器,由控制器智能处理陀螺信号。信号处理完毕之后,由控制器的输出部分,驱动直流伺服电机,实现整个系统的稳定。

2 稳定平台设计

2.1 系统总体设计框图

    此文设计的陀螺稳定平台主要是要保证各个光传感器的视轴稳定。结合整个吊舱系统,主要是实现以下6个功能:

    1)现吊舱的稳定控制;2)实现吊舱的运动控制;3)限位信号输入;4)错误指示电路;5)LOCK电路;6)串口通信。

    图l为系统总体设计框图。


2.2 硬件电路设计

2.2.1 陀螺信号处理电路

    由于俄罗斯的Fizoptika VG94l-3AS光纤陀螺输出信号非常微弱,输出比例因子只有3.3 mV/deg/s。对于这么微弱的信号,必须要先进行小信号的放大电路处理,才能传送到Elmo伺服控制器,进行下一步的处理。这里要说明的一点是,并没有对陀螺输出信号进行滤波处理,原因在于Elmo伺服控制内部已经有了数字滤波电路,可以在调试时进行相关设置,以达到滤波目的。

    Elmo数字伺服控制器原本有2个模拟输入口的,可直接将光纤陀螺的输出信号接入数字伺服控制器,但由于陀螺的随机漂移大,基本无规律可以遵循,每次开机,给陀螺供电时,陀螺的随机输出是不一样的。所以,应设计陀螺信号处理电路,一方面可以将陀螺的输出信号按一定比例的放大,然后输入到Elmo数字伺服控制中,减少程序中的比例因子,进而减少Elmo数字伺服控制器内部的噪声对整个系统的影响,另一方面通过外接一只可调电阻,实现每次开机的漂移量补偿,从而使吊舱保持平稳状态。

    Fizoptika VG941-3A光纤陀螺在载体静止时,输出电压为2.5 V。因此要保证载体静止时,输入到Elmo数字伺服控制模拟输入口的电压为0 V,必须用一个精准电压芯片产生2.5 V的电压,通过放大器4558实现一个减法电路。在该减法电路中,用REF02CZ产生5 V的电压,然后通过电阻分压得到2.5 V基准电压。图2为陀螺信号处理电路(减法电路)原理图。


2.2.2 电源电路设计

    这里的电源电路设计主要的目的是给各芯片提供基准电压。TSMl212D用于产生±12 V基准电源,给放大器4558和REF02CZ提供基准电压,而REF02CZ用于产生+5 V基准电压,给放大器提供参考电压。图3为电源电路原理图。


2.2.3 吊舱运动信号处理电路

    吊舱系统除了要实现基本的陀螺稳定功能外,还必须具备巡航、跟踪等功能。因此,整个吊舱系统还有转动信号、漂移信号的处理电路。这两个信号是通过控制面板(HCU)上相应的开关按钮来控制。图4为吊舱运动信号处理电路原理图。

2.3 系统软件设计

    Elmo Whistle数字化智能驱动器的软件结构总体可分为2大部分:1)驱动器本身的程序,这个包括引导程序,固件和个性化的设置。这些程序可以通过官方网站下载,然后根据特定的驱动器型号进行烧录;2)用户自己的程序,以实现用户自行设计的功能。

    在本系统软件设计中,主要完成陀螺稳定的功能。通过采集Elmo Whistle控制器的模拟输入口由光纤陀螺反馈回来的电压信号AN[1],在程序设定相应的跟随比例AG[2],实现相应的陀螺稳定功能。这里的关键是参数AG[2]的确定。这个参数首先有一个估算的过程,估算完成后,可以在稍后的调试环节中进行微调,最终实现精准的陀螺稳定功能。参数AG[2]可以按以下方法估算:

    1)在Smart Terminal界面中,将输入AN[1]设定为1 V,测量此时吊舱的转速,设为N,并在Smart Terminal界面中查看电机的转速为S1,单位为count/s;

     2)光纤陀螺最大感应输出电压为2.5 V,此时对应吊舱的速度应为M,M的值在吊舱设计时已经设定,为60(°)/s;此时电机的转速为S2,则S2的值为:S2=(60/N)xS1;

    3)比例因子AG[2]=S2/2.5;

    Elmo Whistle内部有可调用函数,通过相应的设置语句,控制器就可以根据判断6个数字输入口的状态,执行相应的内部函数。在本系统中,体现为LOCK信号功能、限位信号功能以及指示输出等。图5为陀螺稳定系统的部分软件流程图。


    为了真正实现机载吊舱的数字化,在实现以上功能之外,本系统还就指令控制吊舱运动做了相应的尝试。在原有的软件模块中,通过判断输入口3的状态.增加了一个串口通信模块。如果检测到控制器数字输入口3为低电平,则触发串口通信模块子程序,向控制器发送控制状态字,实现指令控制吊舱功能。当然,这个功能也可以通过PC机向控制器发送相应的指令实现。

3 结束语

    配合Elmo公司的Studio界面和Recorder软件,可以分析机载吊舱陀螺稳定平台是否达到技术指标要求,并且在有必要的时候修改系统硬件电路设计和程序中的参数,以达到预期的目标。

    本系统最终设计出的机载吊舱陀螺稳定平台,应用于目前的吊舱系统中,吊舱的稳定性能达到50μrad,俯仰转动角度为-120°~+15°,方位转动角度为360°连续,最大转动速度为60(°)/s最大转动加速度200(°)/S2,功耗小于240 W。

关键字:吊舱  陀螺稳定  运动控制  Elmo  whistle 引用地址:基于数字伺服控制器的机载吊舱陀螺稳定平台设计

上一篇:卫星射频设备远程控制监测系统的设计与实现
下一篇:基于虚拟仪器的模糊控制恒压供水系统

推荐阅读最新更新时间:2024-03-30 21:33

ST推出全新陀螺仪,瞄准手机和相机图像稳定应用
中国,2013年9月17日 ——横跨多重电子应用领域、全球领先的半导体供应商、全球第一大消费电子和便携设备MEMS供应商意法半导体 来源:IHS,MEMS H2 2012 Special Report ](STMicroelectronics,简称ST;纽约证券交易所代码:STM)推出新系列陀螺仪产品,为智能手机和数码相机带来更好的光学图像稳定功能。 光学图像稳定已成为今天的智能手机和数码相机的重要功能。通过实时调整镜头以修正相机晃动对成像的不良影响,可大幅提改进图像的锐利度,尤其针对在光源不足的条件下的拍照,因为在光线不足时曝光时间长,拍照时手的晃动会导致图像模糊。 此外,为保证最高的可靠性,新的2轴(L2G3IS)和3轴
[传感器]
MCX314As型四轴运动控制器的原理及应用
1 引言 MCX系列运动控制器是日本NOVA公司设计的专用电路,其中的MCX314As是NOVA公司最新推出的4轴运动控制器,是对MCX314功能的改进和增强。 MCX314As以单个电路同时控制4个伺服系统或步进电机系统,可进行各轴独立的定位控制、速度控制,亦可在任意2轴或3轴中进行圆弧、直线、位模式插补。MCX314As能与8/16位数据总线接口,通过命令、数据和状态等寄存器实现4轴3联动的位置、速度、加速度等的运动控制和实时监控,实现圆弧、直线、位模式3种模式的轨迹插补,输出脉冲频率达到4 MHz。每轴都有伺服反馈输入端、4个输入点和8个输出点,能独立地设置为恒速、线性、非对称S曲线加/减控制、非对称梯形加/减速控制
[单片机]
MCX314As型四轴<font color='red'>运动控制</font>器的原理及应用
关于运动控制过程的偏位问题
导语:偏位问题是使用步进或伺服电机的设备制造厂在设备装机调试以及设备使用过程中,所面临的常见问题之一。出现偏位可能是机械装配不当造成,可能是控制系统与驱动器信号不匹配,也可能是设备内电磁干扰、车间内设备互相干扰或者是设备安装时地线处理不妥当等造成。 规律性偏位 Q:做往复运动,往前越偏越多(少) 可能原因①:脉冲当量不对 原因分析:无论是同步轮结构还是齿轮齿条结构,都存在加工精度误差。运动控制卡(PLC)并没有设置准确的脉冲当量。例如上一批同步轮电机旋转一圈设备前进10mm,这批同步轮大一点电机转一圈前进了10.1mm,就会导致该批机器每次运行比以前的设备多走1%的距离。 解决方式:出机前用机器画一个尽可能大幅面的正方形,然后
[嵌入式]
关于<font color='red'>运动控制</font>过程的偏位问题
自动驾驶运动控制原理
运动控制(激活) 运动控制功能模块图 运动控制(激活)功能模块负责请求与自主车辆运动相关的推进变化,包括但不限于加速请求、制动请求和转向请求。 责任包括: •提供与各种外部执行模块的接口,如电动助力转向(EPS)、自动制动(ABS)、PRNDL变速箱齿轮选择、牵引控制等。 •提供必要的中间件层来管理与外部执行模块完整且足够的接口,这些模块具有不同的复杂性和能力级别。例如,外部执行模块可以包括基于环境数据和条件的学习能力,或者它可以是一个简单的、传统的基于请求的系统。 •接收、管理和展示外部执行模块呈现的车辆运动约束,并呈现给其他自动驾驶系统功能模块。这可能包括聚合、同步、统计分析和封装等活动。 •将目标轨迹转换为针对外部模块的
[嵌入式]
自动驾驶<font color='red'>运动控制</font>原理
基于PCI总线的MPC07控制卡的运动控制系统方案设计
本文采用MPC07控制卡来作为运动控制系统的开发平台,并利用VC++对MPC07运动函数库进行二次开发来编写面向对象的控制程序,从而通过MPC07卡来实现对运动控制系统中小车的精确运动控制。 MPC07控制卡是基于PC机PCI总线的步进电机或数字式伺服电机的上位控制单元,它与PC机构成主从式控制结构,可插在PC机PCI扩展槽内。每块MPC07卡可控制4轴步进电机或数字式伺服电机,并支持多卡共用,以实现多于四个运动轴的控制,且每轴均可输出脉冲和方向信号,以控制电机的运转;同时,MPC07可外接原点、减速、限位等开关信号,以实现回原点、保护等功能,这些开关信号由MPC07卡自动检测并作出反应。MPC07卡还提供了功能强大的运动控
[嵌入式]
意法半导体的运动控制软硬件开发工具
作者:Gianluigi Forte, Dino Costanzo, Antonino Bruno 前言 电机驱动是自动化工业市场的一个主要特点,在电机控制领域的深耕多年的意法半导体 (ST)拥有各种电机专用软硬件解决方案,为满足各种应用需求,ST MC(电机控制)生态系统含有整体解决方案,例如,评估板、固件 (FW)库和相关资料。 现在ST MC生态系统新增一个叫做STM32 PMSM FOC SDK v4.0的永磁同步电机(PMSM)控制固件库。这些工具是意法半导体在数控和功率系统解决方案领域多年积累的深厚知识和系统经验的结晶,有助于缩短客户产品研发周期,加快对意法半导体产品的评估。事实上,意法半导体支持自动
[工业控制]
意法半导体的<font color='red'>运动控制</font>软硬件开发工具
基于CAN总线和双传感器仿人机器人运动控制系统研究
    一、引言     机器人研究是自动化领域最复杂、最具挑战性的课题,它集机械、电子、计算机、材料、传感器、控制技术等多门学科于一体,是多学科高技术成果的集中体现。而仿人步行机器人技术的研究更是处于机器人课题研究的前沿,它在一定程度上代表了一个国家的高科技发展水平。运动控制系统是机器人控制技术的核心,也是机器人研究领域的关键技术之一,在机器人控制中具有举足轻重的地位,因此,各研究机构都把对机器人运动控制系统的研究作为首要任务。     动作协调、具有一定智能、能实现无线实时行走已经成为当今机器人发展的主题。随着以电子计算机和数字电子技术为代表的现代高技术的不断发展,特别是以DSP为代表的高速数字信号处理器和大规模可编程逻辑
[嵌入式]
基于在系统可编程技术的PC运动控制卡研究
摘要:介绍了在系统可编程(ISP)器件及其优点,分析了PC多轴运动控制卡关键电路的作原理,并由高密度的ISP器件设计实现,运动结果表明所设计的电路完全达到了设计要求。 关键词:在系统可编程 双口RAM 多轴运动控制卡 当今,数控系统正在朝着高速度、高精度以及开放化、智能化、网络化的方向发展,而高速度、高精度是通过控制执行部件(包括运行控制卡及伺服系统)来保证的。以往的运动控制卡主是基于单片机和分立数字电路制作的,用以实现位置控制、光栅信号处理等功能。由于器件本身执行速度慢、体积大、集成度低,并且结构固定,电路制作完成以后,无法改变其功能和结构。采用在系统可编程技术,应用ispLSI器件开发的PC——DSP多轴运动控制卡,能够
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
最新工业控制文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved