基于LonWorks 控制网的路灯监控系统

发布者:大橙子5511最新更新时间:2011-03-08 来源: 电子元器件网 手机看文章 扫描二维码
随时随地手机看文章
摘要: 当前路灯监控系统采用的通信技术多种多样,本文分析了各种通信技术方案的特点,阐述了LonWorks 控制网技术应用于路灯监控系统的优点,并设计了完整的监控系统。系统由三个部分组成: 路灯节点、i. LonSmartSever ( 电力线网络管理器) 和路灯监控软件,本文重点阐述了路灯节点的设计。经模拟现场测试,监控系统不仅实现对每个路灯节点的实时监控,而且节省了路灯能耗。

  引言

  目前,我国的路灯系统主要依靠人工管理,需要工作人员定时开关灯; 且当路灯出现故障时,不能及时发现和有效处理。如果采用路灯智能监控系统,不仅能够及时发现路灯的故障情况,减少大量的人力,还能节省路灯能耗,对城市的节能改造作出巨大贡献。

  在路灯监控系统中,数据通信的方案主要有三种:

  第一种方案采用总线通讯技术, 如RS485、CAN 总线等。该方案技术上最成熟,但是需要额外布线,对于改造路段实施起来难度较大。

  第二种方案通过无线通信方式, 包括GPRS、蓝牙、ZigBee 等方案。采用GPRS 通信方式成本太高,一般不会考虑。目前最适合的是ZigBee 通信技术,ZigBee 是一种廉价的低速无线个域网,相对于蓝牙通信具有价格更低、距离更远、支持节点数目更多等优点。ZigBee 适合于网状结构系统, 采用DSSS /O-QPSK 调制,能够有效克服无线传输中的多径干扰问题,传输可靠性高; 但路灯网络中的所有节点分布在一条直线上,延伸至几公里甚至几十公里,并不是ZigBee 理想的拓扑结构。而且无线方式对环境的依赖性较大,在天气恶劣的情况下会影响通信质量。因此ZigBee 技术应用于路灯监控系统的实际效果尚需验证。

  第三种方案采用电力线通信( PLC,Power LineCommunication) 技术, 该方案以电力线为通信介质,减少了布线成本,而且对外部环境的依赖性较小,可靠性更高,与前两种方案相比更加适用于路灯监控网络。电力线通信分窄带调制方式和宽带调制方式。由于路灯监控系统需要传输的数据量较少,因而对传输速率的要求不高,窄带PLC 技术就可以满足通信要求; 而宽带PLC 技术则主要应用于大流量数据( 如多媒体数据等) 的高速传输,而且由于宽带通信所占用的带宽很宽,很容易超出CENELEC规范所规定的频率范围,所以在监控系统中一般不采用。早期的窄带电力线通信一般采用简单的模拟调制技术,其抗干扰能力不强,应用范围有限。但是随着信号检测技术和DSP 技术的发展完善,窄带通信如BPSK ( 二进制相移键控技术) 的抗干扰能力得到很大提高,将会更加适用于PLC 网络。

  综上分析,本文选择电力线窄带BPSK 通信方式作为监控系统的通信方案,并根据路灯系统的特点,提出了可行的系统结构; 随后,本文描述了系统中各个组成部分的设计思路,并详细设计了路灯节点。

  1 系统概述

  为实现路灯的优化管理,路灯监控系统需要收集每盏路灯的状态和环境信息,汇集到电脑终端,集中优化处理后,控制每一盏路灯的输出光通。整个系统的实现框图如图1 所示。



图1 系统实现框图

  图1 中,路灯监控系统主要包括路灯节点、i.Lon SmartSever ( 电力线网络管理器) 以及在电脑终端运行的路灯监控软件。路灯监控软件通过因特网控制LonWorks 控制网中的所有路灯节点; 每一个LonWorks 控制网相当于一个因特网上的站点,配有一个IP 地址, 通过访问该IP 地址, 实现对LonWorks 控制网的访问。

  i. Lon SmartSever 以主从方式管理LonWorks 控制网,并能通过Ethernet 接口或GPRS 通信模块以拨号方式接入因特网。这样, 控制中心通过与i.Lon SmartSever 进行数据交换, 就可以对LonWorks控制网上的每个节点进行监控。此外, i. LonSmartSever 带有多个I /O 端口,用于收集道路的环境信息( 照度、湿度等) ,作为调光依据。

  在监控中心,路灯监控软件不断巡查各个路灯节点的状态,显示每盏路灯的工作状况和输出功率,既能手动控制每个灯的光通,也可以根据一定的算法自动调整路灯照度。

  以下情况可以采用自动调光,包括:

  ● 根据设定时间段调节照度, 如在后半夜时,调节到半载功率输出。

  ● 根据天气情况、不同时期的日照情况开、关灯或调节输出光通。

  ● 根据特殊照明情况调节输出光通。如城市隧道照明场合,为了避免进入或离开隧道时视觉上的不适应,单独调节隧道口的路灯,让其光通缓变。

  ● 根据特殊路段设定输出光通。如在某一路段发生事故时,输出最大光通,以便事故处理,同时提高道路安全。

2 路灯节点设计

  本系统设计的路灯节点包括电力线通信部分、智能电子镇流器部分和高压钠灯部分,电力线通信部分和智能电子镇流器部分通过I2C 接*换数据。其硬件电路实现框图如图2 所示。



图2 路灯节点硬件框图

  2. 1 电力线通信

  2. 1. 1 硬件设计

  电力线通信控制电路主要负责数据在电力线上的可靠传输,其主芯片采用Echelon 公司的PL3120,PL3120 是专用于电力线系统的神经元芯片,内部集成有三个处理器单元和一个电力线收发器。电力线收发器采用窄带BPSK 调制,且具有双载波频率,当主频率受到干扰后,自动切换到预备频率上工作,极大增强了系统抗干扰能力。

  如图3 所示,电力线通信控制电路包括高通耦合电路、功率放大滤波电路和PL3120 及其外围电路; 高通耦合电路提取市电线路中的高频信号,经带通滤波电路滤波后传输给PL3120,解调后得到通信数据。同时, PL3120 将发送数据进行BPSK 调制,功率放大后耦合到电网上。PL3120 通过TXSENSE 引脚采样功率放大电路的输出电压,得到的值用来调整TXBIAS 引脚上的电流,从而控制发送功率。


图3 电力线通信控制电路

  为保证电力线通信电路的可靠工作,必须对高通耦合电路做优化设计,使高通耦合电路滤除50Hz市电分量的同时,具有较大的输入阻抗和较小的输出阻抗,减小信号的衰减。图3 中,电容C1、C2和变压器T1组成发送通路,变压器变比为1 :1,起到隔离作用; 要减小发送通路的交流输出阻抗,需要选择较大的C1、C2。C2为隔直电容,可以取得大些; 但是C1直接接在电力线上,增大容值会增大体积,增加损耗,因此在不增大C1的情况下,通过恰当设计变压器的漏感Lk,与电容C1在载波频率段产生谐振, 减小输出阻抗。在输入通路中,C1和Lm滤除了50Hz 市电分量,而高频信号分量通过C3和L2的谐振电路,将接收信号放大,得到较强的接收信号。实际电路中Lm取1 mH,Lk取12 μH,电容C1取0. 1 μF,C3取1. 5nF,而L2取820μH。

  2. 1. 2 软件设计

  LonWorks 系统的最大优点是通信程序设计采用Neuron C 语言。Neuron C 在标准C 的基础上,提供了大量的硬件接口函数,只需调用相应的函数就可以使用该硬件资源; 而且,节点间的通信通过网络变量的绑定来实现,而通信过程完全由底层协议完成,方便了程序的开发。

  电力线通信软件实现框图如图4 所示,系统定义了一个输入网络变量( i. Lon SmartSever 对节点的控制命令) 和一个输出网络变量( 节点对i. LonSmartSever 的返回数据), 并与i. Lon SmartSever上相应的输出、输入网络变量绑定。发送数据时,改变本地输出网络变量,与之绑定的输入网络变量的值就会随之改变,而数据的传输过程则完全由底层协议完成,极大简化了程序的开发过程。



图4 电力线通信软件实现框图

2. 2 电子镇流器

  如图2 所示,路灯节点中的电子镇流器部分采用普通的两级拓扑结构,前级PFC 电路加后级半桥逆变和谐振触发电路, 并且通过中央处理器电路、采样电路和调光电路收集镇流器的状态信息,并根据命令调光。

  电子镇流器有多种调光方式,调频调光、调母线电压调光、调占空比调光等。在大功率高压钠灯中,由于声谐振的频率点较少,所以选用比较简单的调频方式。

  以下分析频率变化对输出功率的影响。图5 为电子镇流器的谐振电路,为了减小波峰因子,工作频率通常选在谐振频率的4 ~ 6 倍,不考虑高次谐波通过LC 滤波后的分量,仅对该谐振电路进行基波分析。


图5 谐振电路

  基波分量表达式:

其中: Vbus为PFC 电路输出母线电压; Rlamp为稳定工作时灯的等效电阻;输出电压:


 

  其中:



 


  根据式(1)、(2) 可得输出功率:



  当f > f0,随着f 的增大,P0减小( 为了使开关管工作于软开通状态,工作频率一般会选择比f0大)。

  调频调光电路如图6 所示。ATMega8 的PB2 管脚( 计数器比较输出管脚) 输出PWM 波,通过光耦,滤除高频分量后,得到基准电压Vref; 改变Vref,A 点电位改变,4 脚的输出电流就改变,工作频率随之变化( L6574 的4 脚为恒定2V 电压,通过改变4脚的输出电流值改变频率) ; 由式5 可知, 谐振电路的频率改变, 输出功率也随之变化。所以改变ATMega8 输出的PWM 的占空比, 就可以改变灯输出功率,且占空比越大,输出功率越低。


图6 调频调光电路

  经过实验测量,得到输入功率—频率变化曲线图如图7。由于输入功率比较容易测量,所以用输入功率的变化来近似表示输出功率的变化。

  如图7 所示,满载时,工作频率为43 kHz,输入功率为273W; 随着频率增加, 输入功率近似线性减小, 当频率达到60kHz 时, 输入功率约为100W。在很多路灯应用场合,调节至半载功率已经足够; 而且高压钠灯在38 kHz ~ 100 kHz 频率范围内,为声谐振的安全区,可以实现安全调光。


图7 功率—频率曲线图

  3 实验结果

  通过模拟现场情况,在1000 米的电力线上均匀挂上20 个路灯节点。实验结果表明,各个路灯节点能够可靠的完成上位机发出的指令,实现单点调光、多点调光和定时调光等,并且能够准确收集自身的状态信息,显示到电脑上。同时,i. Lon SmartSever在没有上位机操作的情况下,可以通过特定的算法对各个路灯节点的输出光通进行调节, 达到预期效果。

  4 结束语

  随着新的城市节能减排的要求的提出,道路照明系统的优化管理也越来越受到关注,本文提出的基于LonWorks 控制网的路灯监控系统, 选择LonWorks 技术作为路灯监控系统的控制平台,实现了电脑终端对各个路灯节点的实时监控; 并且能够依据路灯所处的具体环境调节输出光通,不但减少了大量的人力、物力和财力,而且实现了更加有效的照明。

  本系统还可以方便地应用到其他类型的路灯照明系统中。随着以LED 为主的第四代光源日趋成熟,很多路灯系统都已经采用了LED 灯,而该系统只需将高压钠灯电子镇流器换成带数字接口的LED驱动器就可以正常工作,同时监控高压钠灯和LED灯节点。

引用地址:基于LonWorks 控制网的路灯监控系统

上一篇:车牌识别系统技术的研究与应用
下一篇:反激变换器副边同步整流控制器STSR3应用电路详解

热门资源推荐
热门放大器推荐
    Error

    An error occurred.

    Sorry, the page you are looking for is currently unavailable.
    Please try again later.

    If you are the system administrator of this resource then you should check the error log for details.

    Faithfully yours, OpenResty.

小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved