SVPWM技术在电动游览车中的应用

发布者:春林初盛最新更新时间:2007-04-18 来源: 电力电子技术关键字:调制  脉宽  逆变  磁场 手机看文章 扫描二维码
随时随地手机看文章

1 引 言

目前,电动汽车的驱动有直流电机、交流感应电机、永磁无刷电机和开关磁阻电机。交流电机以其体积小,结构简单,坚固耐用,运行可靠,制造成本低和易于维护等优点,以及交流变频调速技术所具有的优异调速性能、高效率、高功率因数和节能等特点,而得到了广泛的应用。变频调速系统通常采用正弦脉宽调制(SPWM)和空间矢量脉宽调制(SVPWM),以控制功率开关器件的通断。SPWM着眼于使逆变器的输出电压尽量接近正弦波,其缺点是电压利用率低。从电机的角度出发,SVPWM技术着眼于如何使电机获得幅值恒定的圆形磁场。SVPWM根据逆变器的不同开关模式产生的实际磁通去逼近基准磁通圆。不但能达到较高的控制性能,而且具有转矩脉动小,噪声低,电压利用率高等优点,因此在调速系统中得到了广泛的应用。该系统采用TMS320LF2407作为控制芯片而产生SVPWM波,以控制逆变器开关管的导通和关断。此外,采用容易实现,且性能较优的速度闭环转差频率控制法,以控制游览车的电机。

2 SVPWM技术的原理

2.1 基本电压空间矢量

图1示出电动游览车的逆变器主电路。规定当上桥臂的一个开关管导通时,开关状态为1。此时,相应的下桥臂开关管关断;反之亦然,开关状态为0。3个桥臂只有1或0的状态,因此由3个桥臂的开关状态a,b,c可形成000~111的8种开关模式。其中,000和111的开关模式为零状态,其它6种开关模式可提供有效的输出电压。空间矢量的基本思想就是用这8种开关模式的组合来近似电机的定子电压。

由上述假定可推导出三相逆变器输出的线电压矢量[UAB,UBC,UCA]T与开关状态矢量[a,b,c]T的关系为:


式中 Udc--直流输入电压
三相逆变器输出的相电压矢量[UA,UB,UC]T与开关状态矢量[a,6,c]T的关系为:

将开关状态矢量a,b,c的8种开关组合代入式(2),可求出UA,UB,UC在8种状态下各自对应的电压,然后把在每种开关模式下的相电压值代入u=uA+uB+uC就可依次求出8种开关模式下的相电压矢量和相位角。图2示出这8个基本电压矢量的位置。

上述相电压值都指三相A,B,C平面坐标系中的值.为了计算方便,在DSP程序计算中需将其转换到O,α,β平面坐标系中。如果选择在两个坐标系中,电机的总功率将保持不变,作为两个坐标系的转换原则,则采用下述转换方式:


根据式(3)可将前面算出的各开关模式下对应的相电压转换至O,α,β坐标系中的分量。各基本矢量转换至O,α,β坐标系后的对应分量如图2所示。

2.2 磁链轨迹的控制
有了含6个有效矢量和2个零矢量的这8个基本电压空间矢量后,就可根据这些基本矢量合成尽可能多的电压矢量,以形成一个近似圆形的磁场。图3示出一种电压空间矢量的线性时间组合方法。输出的参考相电压矢量Uout的幅值代表相电压的幅值,其旋转角速度就是输出正弦电压的角频率。Uout可由相邻的两个基本电压矢量Ux和Ux±60的线性时间组合来合成,如:





在每一个TPWM期间都改变相邻基本矢量的作用时间,并保证所合成的电压空间矢量的幅值都相等,因此当TPWM取足够小时,电压矢量的轨迹是一个近似圆形的正多边形。

在合成电压空间矢量时,由于对非零矢量Ux和Ux±60的选择不同,以及零矢量的分割方法也不同,因而会产生多种电压空间矢量的PWM波。目前,应用较为广泛的是七段式电压空间矢量PWM波形,其Ux和Ux±60的选择顺序如图2所示。

2.3 T1,T2和T0的计算

根据式(4),电压空间矢量Uout可由Ux和Ux±60的线性时间组合来得到,则由图3,且根据三角正弦定理有:



由式(5)和式(6)可解得:


式(7)和式(8)中,TPWM可事先选定;Uout可由U/曲线确定:θ可由电压角频率ω和nTPWM的乘积确定。因此,当Ux和Ux±60确定后,就可根据式(7)和式(8)确定T1和T2。最后再根据确定的扇区,选出Ux和Yx±60即可。

为了使每次状态转换时,开关管的开关次数最少,需要在TPWM期间插入零矢量的作用时间,使TPWM=T1+T2+T0。插入零矢量不是集中的加入,而是将零矢量平均分成几份,多点的插入到磁链轨迹中,这不但可使磁链的运动速度平滑,而且还可减少电机的转矩脉动。

2.4 扇区号的确定

将图2划分成6个区域,成为扇区。每个区域的扇区号已在图中标出。确定扇区号是非常重要的,因为只有知道Uout位于哪个扇区,才知道选用哪一对相邻的基本电压空间矢量合成Uout。下面介绍一种确定扇区号的方法,即当Uout以O,α,β坐标系的分量形式Uoutα,Uoutβ给出时,先计算Uref1=Uβ,,再用N=4sign(Uref3)+2sign(Uref2)+sign(Uref1)计算N值。式中sign(x)为符号函数,当x>0时,则sign(x)=1;当x<0时,则sign(x)=0。然后,根据N的值,查表l即可确定扇区了。

在每一个PWM周期中,各扇区中Ux和Ux±60的切换换顺序如图2所示。图4示出七段式电压空间矢量PWM波的零矢量和非零矢量在0扇区的施加顺序及作用时间。

3 SVPWM的过调制处理

正常SVPWM调制波的电压矢量的端点轨迹位于六边形的内切圆内,见图4。如果电压矢量的端点轨迹位于六边形的外接圆和外切圆之间时,SVPWM将出现过调制的暂态,这时若不采取措施,输出电压将会出现严重失真而增大电机的转矩脉动,由此应避免电压矢量进入该区。

一般的做法是对端点超出六边形的部分进行压缩,保持其相位不变,将其端点回至内切圆内。工程实现时,先判断电压矢量的端点轨迹是否超出外切六边形,再计算T0,T1,T2,具体实现比较麻烦。一种简单的实现方法是,首先计算出T1,T2,并判断T1+T2>TPWM是否成立,若不成立,则保持T1,T2的值不变:若成立,则将电压矢量的端点轨迹拉回至圆的外切六边形内,假定此时的两非零矢量作用时间分别为T1,T2,则可得:T1/T1=T2/T2,因此,T1,T2,T0可按T1=[T1/(T1+T2)]TPWM,T2=TPWM-T1,T0=0求得。

按上述方法即可生成所需的SVPWM波,并可得到所需的电压矢量Uout。图5示出过调制示意图。

4 游览车的控制原理及其实现

4.1 系统的组成和原理

图6示出基于SVPWM的游览车控制框图。该系统采用转速闭环的转差频率控制方法,可以控制游览车以设定的速度行驶。系统的控制电路由DSP控制芯片、逻辑控制单元、司控台通讯单元、各种信号检测及速度采样电路组成:主电路采用IPM模块;牵引电机为三相异步电机。

系统对实际速度和给定速度实时采样,计算转差频率,经过PI调节后的转差频率作为转差给定,与实际的转速相加得到此时的同步频率?,然后根据U/?函数计算出电机的定子参考相电压Uout,其幅值代表相电压的幅值,其旋转角速度就是输出的正弦电压角频率。Uout的角度θ由同步电压角频率积分得到,SVPWM模块根据Uout和电压同步频率?1生成PWM调制波形。

4.2 系统的软件实现

软件大体分为主程序和SVPWM中断服务程序两部分。主程序主要完成显示以及与司机控制台的通讯。图7示出SVPWM中断服务程序流程图。主要完成电流、电压的A/D转换;实际速度和给定速度的检测;SVPWM的波形生成。该系统采用了软件生成SVPWM波形。其步骤是:①根据实际转速和给定转差算出?1,并对?1积分得到θ;②根据压频函数算出Uout;有了上述值,可根据前公式计算出Uoutα,Uoutβ,Uref3,Uref2和Uref1;③确定扇区和计算T1,T2,T0;④判断是否过调制,如果过调制,则重新计算T1,T2,T0;⑤更新比较寄存器的值,中断服务程序完毕。

5 试验波形及结论

图8示出逆变器输出的相电流is和线电压uab,波形。电流的有效值为23.27A,频率为24.78Hz。由图可见,电流波形为良好的正弦波。

该系统采用TMS320LF2407 DSP作为控制芯片,实现了转差频率控制策略,并用软件法生成SVPWM波形控制游览车的逆变器,实现了电动游览车所要求的恒转矩启动、恒功率运行的牵引特性。该系统具有控制策略简单,系统稳定性好,动态响应快,牵引力大,加速性能和制动性能好的特点。

关键字:调制  脉宽  逆变  磁场 引用地址:SVPWM技术在电动游览车中的应用

上一篇:基于NiosII的SOPC多处理器系统设计方法
下一篇:基于VHDL的交通灯控制器设计

推荐阅读最新更新时间:2024-03-30 21:23

基于PIC单片机的逆变电路设计初探
  针对现代电源变频调幅的要求,提出了利用PIC16F873产生SPWM波控制IR2136触发IGBT产生PWM波作用于逆变器产生标准的正弦波形,从而实现变频调幅。同时利用AD模块对逆变桥输出进行采样并进行滤波处理,实现对系统的PI闭环控制。通过MATLAB中的SIMULINK组件进行仿真分析,结果表明此方案输出电压动态响应速度快,具有良好的精度控制及实时性、波形失真小、可靠性高。   随着科学技术的进步,电源质量越来越成为各种电气设备正常和良好工作的基础。电源技术领域的一个持续的研究课题即是研究作为电子信息产业命脉的电源的可靠性和稳定性。   而逆变器作为电源的核心部分,其调制技术很大程度上决定了电源输出电压的质量。目前最常
[单片机]
基于PIC单片机的<font color='red'>逆变</font>电路设计初探
零下40度也能正常工作 阳光电源逆变器是怎么做的?
10℃、2℃、-3℃…… 天气预报里的最低气温早已低于0℃ 立冬的到来也正式告知我们迎来冬天 我们常说 夏季的高温对逆变器是一场“烤”验 那寒冬呢? 低温不仅会“伤害”逆变器的元器件 甚至会让逆变器直接“罢工” 低温天气给电站带来的损失远比想象的要严重 一般的逆变器在-25℃以下就可能会down机 而阳光组串逆变器   可以在-40℃的雪域高原里平稳运行 这是如何做到的呢? 看~阳光组串逆变器御寒有高招 宽工作温度范围的元器件,抗冻! 高效稳定的软硬件和结构设计,安全! 多重严酷的产品测试,可靠! 正所谓~内外兼修多重保护 气温再低也不怕,高效发电有保障 你get了吗?
[新能源]
采用BoostPWMDC/DC变换器的正弦波逆变
摘要:介绍了采用BoostPWMDC/DC变换器的正弦波逆变器的工作原理与控制方式,这是一种新型的正弦波逆变器。 关键词:升压;DC/DC变换器;正弦波逆变器   1    引言     传统的电压型逆变器只能降压,不能升压。要升压就必须采用升压变压器,或在直流电源与逆变器之间串入Boost DC/DC变换器。这对于应用于UPS及通信振铃电源的低频逆变器来说,将会使电源的体积重量大大增加。而采用新型的BoostPWMDC/DC变换器组成的逆变器,将会很简单地实现升压逆变。如果在一个周期内不断地按着正弦规律改变载波周期内的占空比 D ,就可以输出电压成为正弦波。 2    Boost变换器的升压特性
[电源管理]
采用BoostPWMDC/DC变换器的正弦波<font color='red'>逆变</font>器
预计2025年全球新增逆变器需求将达到500GW
兴业证券指出,除新增光伏外,储能市场已显爆发之势,另外存量光伏逆变器的更换需求也不容小觑,三者叠加将共同促进量的高增长。预计2025年全球新增逆变器需求将达到500GW,年复合增长率将明显高于单纯光伏行业增速。看好逆变器环节依靠行业α及海外高溢价优势,通过高增长消化高估值,看好阳光稳坐龙头,专注于分布式市场的三小龙弹性十足。
[新能源]
基于调制解调器与VB的PLC远程通讯系统设计
1引言 随着计算机和通讯技术的发展,在工业测量和控制中广泛需要远程通讯。远端 PLC 等下位机做生产控制,本地计算机需要实时监测或参与控制生产现场的参数。实现以上要求的一个简便的途径是利用覆盖面广泛的公用电话网,使PLC等下位机利用调制解调器(MODEM)和计算机的调制解调器连接通讯,即可完成硬件上的连接。如图1所示。在软件方面,由远端下位机软件控制和远程监控站软件两部分组成。考虑到本地监控站软件只做数据监测或少许控制且编程相对简单,所以本地监控站的编程软件可以直接用高级语言。 2系统概述 本文以一个实际的小水电站的泻水闸门程控工程为例,着重叙述永宏PLC和PC做远程通讯的实现细节。系统的下位机控制采用永宏公司的FBs系列P
[嵌入式]
山亿新能源光伏并网逆变器技术交流会在南京成功举行
日前,由山亿新能源股份有限公司赞助,江苏省光伏产业协会主办的光伏并网逆变器技术交流会在南京成功闭幕,此次交流会邀请光伏行业内知名人士60多人。 会议主要对2010年江苏省光伏产业发展、大功率光伏逆变器在智能电网中的运用技术、光伏发电项目介入电网的技术、太阳能光伏并网系统的设计介绍和光伏并网发电存在的问题进行交流。 会议由江苏省光伏产业协会秘书长许瑞林主持,会议一开始魏启东秘书长通过对国外、国内、江苏省光伏现状及存在的问题进行分析,他在分析中指出国内的多晶硅产业取得突破性进展,但仍然存在瓶颈,在2010年中国多晶硅产量达到4万吨左右,但这个产量只能满足2010年中国多晶硅市场的一半,还有尽4万吨需要进口。江苏省2010年多
[新能源]
三相方波逆变电路
三相方波逆变 电路 1、电路结构 三相方波 逆变电路 常用三相桥式电路结构,如图a),有时输入 端采用 电容 分压构成中点与负载中点相连 2、脉冲 控制 策略 每一个主 开关 管的控制脉冲宽度为 rad,同一桥臂上下两个 开关 管脉冲互补。 相邻桥臂之间的脉冲相序互差2/3 rad,即相邻序号主开关之间的脉冲相序相差/3 rad。
[模拟电子]
三相方波<font color='red'>逆变</font>电路
IA4420在双向无线防盗系统中的应用
  IA4420/21是Integration Associates公司推出的射频收发一体芯片,IA4420工作在315/433/868/915MHz频段,IA4421工作在 433/868/915MHz频段。芯片的工作电压为2.2~5.4V,采用低功耗模式,待机电流为0.3μA,采用FSK调制模式,发射功率为 5~8dbm,接收灵敏度为-109dbm,内置时钟输出,可省掉MCU的晶振。IA4420/21具有高数据传输速率,数字信号的传输速率可达 115.2kbps,模拟信号的传输速率可达256kbps。   IA4420/21 具备高度集成的PLL,方便了RF设计;高速的工作速率可以迅速跳频,避开多径衰退和干扰,找到稳定的无线电
[网络通信]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved