选择合适的集成度来满足电机设计要求

发布者:EE小广播最新更新时间:2023-06-13 来源: EEWORLD关键字:电机设计  电机 手机看文章 扫描二维码
随时随地手机看文章

这篇文章是我们运动控制技术文章系列的第三篇(第一篇 |第二篇)。


如果您正在设计电机驱动应用,以往您可能会使用如双极结型晶体管 (BJT) 等多个分立式元件来实现电机控制。尽管这种方法通常成本更低,但使用的元件总数更多,占用的布板空间更大,花费的设计时间更长,复杂度也更高。使用多个元件还可能会影响系统可靠性。


随着应用的复杂度增加、功率提高、占用空间减小,集成变得至关重要。集成解决方案可以缩短设计时间、简化采购流程以及节省成本,同时还可以确保电机系统更加可靠和高效。


在本文中,我将对不同的电机控制实现方案进行比较,包括分立式和完全集成式选项,从而帮助您找到适合您设计的方法。表 1 比较了各种电机控制选项的集成度。 


image.png

表 1:用于驱动电机的集成度


采用分立式方法进行电机控制


图 1 展示了控制单元(如微控制器 (MCU))处理电机状态的反馈,并发送信号来调节电机的扭矩、位置和速度。栅极驱动器将来自 MCU 的信号放大,以驱动电机的金属氧化物半导体场效应晶体管 (MOSFET)。


 image.png

图 1:基本电机控制方框图


您可以使用 BJT 图腾柱/推挽电路作为栅极驱动电路来驱动单个 MOSFET,如图 2 所示。尽管此方法成本很低且易于实现,但 BJT 图腾柱电路所需的外部元件数量较多且占用的布板空间较大。此外,您必须复制此分立式电路,因为您需要多个 MOSFET 来驱动电机,致使所需的元件数量和布板空间成倍增加。

 

image.png

图 2:采用分立式 BJT 图腾柱/推挽电路实现栅极驱动器方框图


第一个集成选项:栅极驱动器 IC


基本栅极驱动器 IC 将图腾柱的功能集成到单个封装内。最近的工艺技术不断创新,使得栅极驱动器 IC 与分立式 BJT 一样实惠。


在选择栅极驱动器 IC 时需要考虑几个注意事项,例如通道数以及最适合电机功率级别的电压和电流能力,如图 3 所示。 


集成式栅极驱动器 IC 包括:


单通道栅极驱动器(如德州仪器 (TI) 的 UCC21732),通常用于驱动高侧和低侧高压 (>700V) 电源开关(如绝缘栅双极型晶体管 (IGBT) 和碳化硅 (SiC))的交流电机。 

双通道半桥栅极驱动器(如 UCC27712),用于驱动 IGBT 和 MOSFET 的 100V 至 700V 电机  

四通道 H 桥驱动器和六通道三相电机栅极驱动器(如 DRV8329),专为低压 MOSFET (<60V) 直流电机设计 


随着电机功率级别的变化,使用栅极驱动器可以保持以前的设计,同时只改变外部 FET 以适应新的电压和电流电平。


 image.png

图 3:驱动外部 FET 的栅极驱动器 IC 类型


栅极驱动器涵盖具备基本功能(如防止跨导的欠压锁定和联锁保护)的驱动器,以及具备高级功能(如用于压摆率控制和自动死区控制的智能栅极驱动技术)的驱动器。了解有关这些栅极驱动器的更多信息,请参阅“了解智能栅极驱动”应用手册。


传统上而言,由以下外部元件设置压摆率:两个源极和漏极电阻器(用于限制 MOSFET 栅极的电流)、一个二极管(用于单独调节上升和下降速率),以及一个下拉电阻器。借助智能栅极驱动技术,可以不再使用这些元件,而且可通过串行外设接口灵活调节压摆率。


六通道驱动器采用智能栅极驱动技术,无需使用多达 24 个分立式元件,节省了布板空间,也减少了物料清单 (BOM) 数量。栅极驱动器还集成了其他保护和诊断功能,包括电流检测、过流和过热保护、故障检测甚至隔离功能,这进一步减少了元件数量。


第二个集成选项:电机驱动器 IC


电机驱动器 IC 包括栅极驱动器和集成 FET,非常适合低功率电机系统 (<70W),如图 4 所示。与栅极驱动器相比,电机驱动器 IC 的占用空间更小;集成了 FET 功率级,从而简化了设计原理图和布局。与栅极驱动器 IC 一样,电机驱动器 IC(如 DRV8962)也集成了保护和诊断功能。


 image.png

图 4:具有集成 FET 的 H 桥和三相电机驱动器


在选择电机驱动解决方案时,务必要考虑内部 FET 的 RDS(ON)、峰值电流和均方根电流。考虑到内部 FET 的功率耗散,还需要执行热计算。


第三个集成选项:集成控制栅极驱动器 IC 


与前两个选项不同,集成控制栅极驱动器 IC(如 MCT8329A)无需 MCU 即可进行电机控制。这些 IC 仍然具有具备保护和诊断功能的栅极驱动器,同时纳入了控制算法而无需 MCU 辅助,如图 5 所示。


电机换向算法的实现可能很复杂,无论是梯形控制、正弦控制还是磁场定向控制。集成控制栅极驱动器 IC 提供了一种无代码解决方案,可在内部处理换向算法,从而帮助您缩短设计时间,简化编码、调试和测试的复杂性。


 image.png

图 5:集成控制三相栅极驱动器


借助集成控制栅极驱动器 IC,通过传感器控制或无传感器控制可灵活实现电机换向。采用传感器控制方法,可以使用外部霍尔效应传感器来检测转子位置;这些 IC 可以采用霍尔效应传感器输入,并利用电机控制算法来安静高效地驱动电机。相比之下,采用无传感器控制实现方法,无需使用外部霍尔效应传感器,从而减少了布板空间和 BOM。如果选择无传感器集成控制栅极驱动器 IC,则需要通过集成电流检测测量反电动势(反 EMF)电压,并在内部计算电机位置。


第四个集成选项:集成控制、栅极驱动器和 FET IC


最后一个集成选项通常称为“完全集成”,如图 6 所示。集成控制、栅极驱动器和 FET IC(如 MCF8315A)将无代码控制功能、具有保护和诊断功能的驱动器以及 FET 集成在一个芯片内,因此占用的布板空间更小、BOM 更少。与电机驱动器 IC 选项类似,集成控制、栅极驱动器和 FET IC 解决方案受到内部 FET 的功能限制,因此需要进行电流和热计算。 


 image.png

图 6:完全集成 - 电机控制、驱动器和 FET


结语


这些不同级别的 IC 不仅可满足电机的功率级别要求,还可以缩短设计时间、节省成本和降低复杂性。集成器件还可以解决家用电器中的可闻噪声以及工厂自动化和机器人技术中的高精度控制等难题。


关键字:电机设计  电机 引用地址:选择合适的集成度来满足电机设计要求

上一篇:关于尼得科研发出新型电动助力转向系统电机电源组的通知
下一篇:东芝推出外部部件更少的小型封装电机驱动IC,节省电路板空间

推荐阅读最新更新时间:2024-10-09 17:05

步进电机的参数
电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。 步进电机的相数:是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72° 。 保持转矩:是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。 相数:产生不同对极N、S磁场的激磁线圈对数,是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75
[模拟电子]
高性能低功耗三相BLDC电机控制系统的设计
BLDC通常使用三个相位(绕组),每个相位具有120度的导通间隔(参见图7)。   图7:六步换向 由于为双向电流,每个相位按照每个导通间隔有两个步骤。这是一种镀锡六步换向。例如,换向相序可为AB-AC-BC-BA-CA-CB。每个导电阶段标记一个步骤,任何时候只能由两个绕组导通电流,第三个绕组悬空。未励磁绕组可用作反馈控制,构成无传感器控制算法特征的基础。 为了保持在转子之前的定子内部的磁场,并产生最佳扭矩,必须在精确的转子位置完成从一个扇形区到另一个的过渡。通过每 60 度转向的开关电路获得最大扭矩。所有开关控制算法均包含在MCU中。微控制器可通过MOSFET驱动器控制开关电路。 MOSFET驱动器 包含适
[嵌入式]
51单片机综合学习系统之 步进电机控制篇
大家好,通过以前的学习,我们已经对51单片机综合学习系统的使用方法及学习方式有所了解与熟悉,学会了红外线遥控的基本知识,体会到了综合学习系统的易用性与易学性,这一期我们将一起学习步进电机控制的基本原理与使用方法。 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见
[单片机]
51单片机综合学习系统之 步进<font color='red'>电机</font>控制篇
无刷电机启动不起来的原因 直流无刷电机失步得原因
  无刷电机启动不起来的原因   无刷电机启动不起来的原因可能有很多,以下是一些常见的问题和解决方法:   电源问题:检查电源是否正常,电压是否足够,电源线是否连接良好。   控制器问题:无刷电机需要配合专门的控制器使用,检查控制器是否正确配置和连接,是否故障。   传感器问题:无刷电机需要通过传感器来检测转子的位置和速度,检查传感器是否正常。   机械问题:检查电机转子是否卡住或者电机机械部分是否存在故障。   程序问题:无刷电机需要通过控制器进行调速,检查程序是否正确。   如果以上问题均排除,建议检查电机线路连接是否正确,是否短路或开路,或者将电机连接到其他控制器或电源上测试,以确认是不是控制器或电源的问题。如果您仍然无法解
[嵌入式]
直流无刷伺服电机运动控制系统设计和运用
Motionchip是一种性能优异的专用运动控制芯片,扩展容易,使用方便。本文基于该芯片设计了一款可用于直流有刷/无刷伺服电机的智能伺服驱动器,并将该驱动器运用到加氢反应器超声检测成像系统中,上位机通过485总线分别控制直流有刷电机和无刷电机,取得了很好的控制效果,满足了该系统的高精度要求。 在传统的电机伺服控制装置中,一般采用一个或多个单片机作为伺服控制的核心处理器。由于这种伺服控制器外围电路复杂,计算速度慢,从而导致控制效果不理想。近年来,许多新的电机控制算法被研究并运用于电机控制系统中,如矢量控制、直接转矩控制等。随着这些控制算法的日益复杂,必须具备高速运算能力的处理器才能实现实时计算和控制。为了适应这种需要,国外许多公
[嵌入式]
多台电机独立控制及故障排障方法
多台电机独立控制 控制要求: 为两台异步电动机设计一个控制线路,其要求如下: (1)两台电动机互不影响地独立工作; (2)能同时控制两台电动机的起动与停止; (3)当一台电动机发生故障时,两台电动机均停止。 设计参考图: SB1、SB2分别为两台电机独立起动按钮,SB4、SB4分别为两台电机独立停止按钮,SB0为两台电机总停止按钮,SB3为两台电机总起动按钮。 电动机运行或故障时,可通过看、听、闻、摸四种方法来及时预防和排除故障,保证电动机的安全运行。 一、看 观察电动机运行过程中有无异常,其主要表现为以下几种情况。 1.定子绕组短路时,可能会看到电动机冒烟。 2.电动机严重过载或缺相运行时,转速
[工业控制]
多台<font color='red'>电机</font>独立控制及故障排障方法
stm32和电机开发(直流有刷电机和步进电机
很多的课程都喜欢把电机原理完完整整讲一遍。但是对于控制的同学,这部分内容是否真的需要值得商榷。做电机控制,大部分都是在学了stm32之类的mcu之后才开始进行的。这部分,不如按照个人认知习惯去学习或许效率更高。 1、直流有刷电机和步进电机 虽然直流无刷电机bldc、pmsm这两类电机似乎更有技术含量一点,但是从学习角度来说,直流有刷电机和步进电机是最合适的。说到直流有刷电机,大家可以把它想象成小时候玩具上的电机。上面会有一个正负极,分别连接在电源两侧。如果是正着接,那么电机就正转;如果反着接,就反转。 步进电机,看的比较多的是二相四线步进电机,可以简单看成两对正负线。如果要步进电机转起来,只需要定时给一定数量的方波即可。比
[单片机]
stm32和<font color='red'>电机</font>开发(直流有刷<font color='red'>电机</font>和步进<font color='red'>电机</font>)
通过智能电机控制优化实时性能与效率的方案
数十年来,大多数电机控制应用都依赖于可为其实现低成本与实施简便性的通用有刷 DC 与步进电机。不过,随着微处理器 (MCU) 架构的不断创新与集成度的不断提高,当今开发人员能够采用更先进与更智能的电机类型与控制机制,以极低的成本提高电机的精度、性能、电源效率和使用一系列状态简化控制复杂性。所支持的状态越多,对位置的控制精确度就越高,但这同时也意味着需要更复杂的处理过程寿命。 高级电机类型 AC 电感 (ACI) 电机能很好地满足各种不同高性能应用的需求,其中包括白色家电、泵、风扇以及压缩机等(如冰箱和 HVAC 系统)。由于电机的内部定子和转子由可变电流控制且以不同的速度旋转,因而 ACI 电机采“持续”的控制方案来提高定位精
[单片机]
通过智能<font color='red'>电机</font>控制优化实时性能与效率的方案
小广播
最新工业控制文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved