基于ARM的超声波发射与控制电路设计

发布者:tony520最新更新时间:2010-09-12 来源: 电子设计工程关键字:收发器  ARM  PWM  S3C2440  ARM920T 手机看文章 扫描二维码
随时随地手机看文章

      随着科学技术的发展,高温、高压、高速和高负荷已成为现代工业的重要标志,但它的实现是建立在材料高质量的基础之上的,为确保这种优异的质量,必须采用不破坏产品原来的形状、不改变其使用性能的检测方法,对产品进行百分之百地检测,以确保其可靠性和安全性,这种技术就是无损检测技术。

     超声波检测在无损检测中占据着主要地位,广泛应用于金属、非金属材料以及医学仪器等领域。近年来以微电子学和计算机技术为基础的信息技术飞速发展,超声无损检测仪器也得到了前所未有的发展动力,为了提高检测的可靠性和提高检测效率,研制数字化、智能化、自动化、图像化的超声仪是当今无损检测领域发展的一个重要趋势。而传统的超声波检测仪存在准确性差、精度低、体积大、功耗大、人机界面不友好等问题。而超声波发射与控制电路正是在一种基于ARM的超声波检测系统的基础上,以ARM微控制器为核心,使用C语言编程,方便地实现了发射频率与激励电压脉冲幅度的调节。

1 超声波检测系统的总体设计结构

    基于ARM超声波检测系统的总体结构框图,如图1所示。该系统主要由3部分组成:超声波前端发射接收电路、DSP和ARM处理器。


    超声波前端发射电路负责产生激励脉冲电压和重复频率可调的超声波。接收电路首先将反射回来的微弱信号经放大、滤波等电路处理,然后通过A/D转换电路对信号进行采集并将采集的信号经数据缓冲FIF0送入DSP。

    DSP接收由A/D转换器经FIF0缓冲后的数据,主要完成计算结构复杂的信号处理算法,提高超声探伤仪器的精度和数据处理能力。

    ARM处理器主要完成两部分功能:一是控制功能,调节激励脉冲的宽度和重复频率以及放大电路的放大倍数;二是实现信号的实时显示、存储以及和外部的通信等功能。ARM微处理器采用基于ARM920T的16/32位RISC微处理器S3C2440A。其内核频率最高为400 MHz,功耗低,体积小,集成外设多,数据处理能力好,因而可广泛应用于手持设备等。

2 超声波发射电路

    根据被测件的材料、厚度等不同条件,所需的相应超声波探头的频率、发射电压也不同。发射的超声波频率一般为几MHz,高压激励脉冲一般为几十到几百伏,脉冲的上升时间不超过100 ns。根据频谱分析,激励脉冲宽度探头频率之间存在着最佳关系式,当脉冲宽度满足这一关系式时,接收探头的接收信号质量最好。该关系式即为:
   
式中,f0为探头频率,2a为脉冲宽度。本设计所选探头频率为2.5 MHz,由式(1)确定的脉冲宽度为600 ns,所以放电时间应尽量控制在600 ns。

    超声波探伤法的种类很多,实际运用中,大部分选用脉冲反射法,其发射电路多选用非调谐式,超声波发射电路如图2所示。电路由可调高压电源、电阻R1和R2、能量存储电容C、绝缘栅型双极晶体管(IGBT)VQ、快速恢复型二极管VD1、VD2和探头组成,设二极管等效电阻为R3,开关等效电阻为R4。ARM微处理器的PWM模块产生频率和占空比可调的脉冲,经IGBT的驱动和保护电路后送入开关管VQ的栅极形成控制脉冲V1。当V1为负脉冲时,IGBT关断,高压电源通过R1、VD2对电容C充电,充电时间常数为τ1=C(R1+R3)。当t>5τ1时,认为电容C充满。当V1为正脉冲时,IGBT开通,电容C通过开关管VQ、R2和二极管VD1对探头放电,放电时间常数为τl=C(R2+R3+R4)。超声波探头收到高压负脉冲的激励后便产生一定频率的超声波。


    电路中元件作用:

    1)电阻R1用来限制充电时高压电源对电容C的充电电流,即起到限流作用,并减小发射单元工作时对电源的影响,从这点考虑,要求电阻R1阻值越大越好。另一方面,电路的重复频率f较高,为了使电容C在触发前能充满电,就必须满足CR1<1/5f。所以要选择合适的电阻R1的阻值。

    2)电阻R2有2个作用:一是调节放电时间和发射功率,二是作为阻尼电阻,调节超声脉冲宽度。R2的阻值越小,发射功率越小,发射脉冲越窄;R2阻值越大,发射功率越大,发射脉冲越宽。

    3)快速恢复型二极管Vd1、Vd2滤去充电脉冲,使A点只有放电时的负电压激励脉冲。

    充电时,电流i与电压UR的关系式如式(2)~式(3)所示。

 

   
    所研制的电路板可激发探头产生0.5~10 MHz的超声波,激励脉冲电压最高可达830 V,脉冲的上升时间小于50 ns。

3 基于ARM的PWM脉冲的产生

    ARM嵌入式处理器是具有极低功耗、极低成本的高性能处理器,运算速度快、精度高,而且便于实时操作系统的移植,真正成为实时多任务系统。S3C2440A内嵌PWM脉冲模块含4通道16位定时器,占空比、频率、极性可编程,且具有自动重载和双缓冲功能。主频FCLK最高达400M-Hz,APB总线设备使用的PCLK最高达68 MHz。具体过程为:首先,开启自动重载功能,对PWM脉冲的各个参数通过PWM寄存器进行设置,如定时器配置寄存器(TCFGn),定时器控制寄存器(TCON),定时器计数缓存寄存器(TCNTBn),定时器比较缓存寄存器(TCMPBn),定时器计数观察计数器(TCNTOn)等的设置。其次,设置相应定时器的手动更新位,然后设置开始位,在等待时间后定时器开始倒计数,当TCNTn和TCMPn的值相同时,TOUTn的逻辑电平由低变为高。当TCNTn为0,TCNTn用TCNTBn的值自动重载。如果要重新设置TCNTn的初始值,则要执行手动更新。

    通过使用TCMPBn来执行PWM功能,PWM的频率由TCNTBn来决定。双缓冲功能允许对下个PWM周期在当前PWM周期任意时间点由ISR或其他程序改写TCMPBn。

4 高压电源及其控制

    超声波发射电路对激励电压脉冲要求较高,需要一定的幅值,而且脉冲宽度要求越小越好,且须有一定的发射功率,这决定了超声波探伤的灵敏度,还关系到工件探伤的深度。如果要穿透较厚的工件,就需将较大的电功率转换成声功率。发射功率为:
   
式中,uA0为电容放电时的瞬间电压,C为电容容量,t为放电时间,为有效功率。

    当放电时间常数确定后,放电时间和C即确定。所以加大发射电压是提高发射功率的主要途径,由放电电压公式可知,除电路中的各个电阻影响外,高压电源的电压是一个主要因素。但电压又不能太高,否则会使压电晶片加速老化。一般发射电压不超过1 800 V。

    这里采用美国Ultravoh公司的高压电源模块。其中“V”系列的型号为1V12-P0.4电源模块,能完全满足该设计的需求,其输入电压为12 V,输出电压为0~1 000 V,控制电压为0~5 V,功率为0.4 W。低功耗、体积小、重量轻,并带有输出电压监测和自保护电路。高压电源控制电路如图3所示。


    ARM微处理器输出的控制信号经D/A转换后可输出0~5 V的控制信号V2,相应的高压电源模块即可输出0~1 000 V的电压。

5 仿真及分析

    为验证本设计是否能满足实验的需要,对电路进行软件仿真。因为t=5τ1,约为500μs时认为充电电容充满,所以把开关频率设置为1kH-z。仿真结果如图4和图5所示。

     


    图4中,高压电源输出为725V,R1=10 kΩ,R2=100 Ω,C=0.01μF,得到的激励脉冲约为600 V,宽度为600 ns。此脉冲满足本设计中超声波频率为2.5 MHz时,探头对激励脉冲宽度的要求。

    图5中,当高压电源输出最大为1 000 V,R1=10 kΩ,R2=100 Ω,C=0.01μF时,得到的激励脉冲约为830 V,宽度为600 ns。

    由于带充电电阻器的高压直流电源效率不是很高,所以激励脉冲的电压也不能达到高压电源的电压。通过ARM微处理器发射不同频率和占空比的控制脉冲,可以控制发射电路发射宽度和重复频率可调的激励脉冲。

6 结论

    通过对发射电路工作原理以及各个元件作用的分析,得出了各个元件对超声波所起的不同作用,以及ARM的PWM模块如何对激励脉冲宽度和重复频率进行调制。经验证。该电路发射的超声波功率、脉冲宽度和重复频率均可调。能满足多种检测需求。

关键字:收发器  ARM  PWM  S3C2440  ARM920T 引用地址:基于ARM的超声波发射与控制电路设计

上一篇:基于ARM2210的智能移动机器人人机界面设计
下一篇:基于ARM7处理器LPC2104的嵌入式数据采集系统

推荐阅读最新更新时间:2024-03-16 12:30

单极性PWM技术在雷达天线控制中的应用
    随着大功率半导体技术的发展,全控型电力电子器件组成的脉冲宽度调制(PWM)技术在雷达天线控制系统中得到了广泛的应用。雷达天线控制系统一般采用脉冲宽度调制(PWM)技术实现电机调速,由功率晶体管组成的H桥功率转换电路常用于拖动伺服电机。根据在一个开关周期内,电枢两端所作用的电压极性的不同分为双极性和单极性模式PWM。     双极性PWM功率转换器中,同侧的上、下桥臂控制信号是相反的PWM信号;而不同侧之间上、下桥臂的控制信号相同。在PWM占空比为50%时,虽然电机不动,电枢两端的瞬时电压和瞬时电流都是交变的,交变电流的平均值为零,电动机产生高频的微振,能消除摩擦死区;低速时每个功率管的驱动脉宽仍较宽,有利于保证功率管的可靠导
[嵌入式]
医疗信息通信昭示人体局域网时代的到来
  尽管可植入射频收发器芯片技术的进步推动了体内医疗通信技术的发展,但是超低功耗无线人体传感器的快速发展却促进了体外通信技术的形成。进而,构成人体局域网(即BAN)平台,实现体内/体外医用传感器与监测工具的无线连接,实时提供病人的健康数据。   随着宽带移动电子技术与超低功耗消费电子的结合,以及可植入半导体无线收发器芯片和传感器日趋小型化,全球的医疗保健和健康诊疗手段正发生着快速的变化。从而,支持远程实时医疗检测和治疗的新服务与应用不断涌现,进而促进普及式医疗服务发展到一个全新的水平。   2007年,在美国檀香山召开的国际微波大会上,日本横滨国立大学医疗信息通信技术研究所主任Ryuji Kohno教授在他的主题演讲中指
[医疗电子]
医疗信息通信昭示人体局域网时代的到来
痞子衡嵌入式:ARM Cortex-M内核那些事(2)- 第一款微控制器
1.天生荣耀:ARM Cortex-M处理器由来   ARM公司自2004年推出ARMv7内核架构时,摒弃了以往 ARM+数字 这种处理器命名方法(ARM11之前的处理器统称经典处理器系列),重新启用Cortex来命名,并将Cortex系列细分为三大类: Cortex-A系列:面向性能密集型系统的应用处理器内核 Cortex-R系列:面向实时应用的高性能内核 Cortex-M系列:面向各类嵌入式应用的微控制器内核   Cortex-M系列主要是用来取代经典处理器ARM7系列(比如基于ARMv4架构的ARM7TDMI),Cortex-M比ARM7的架构高了3代,性能也有较大提升,所以新的设计推荐使用Cortex-M,关于
[单片机]
详解插头电脑的功能与应用
插头电脑 (Plug Computer), 顾名思义,外形像电源插头,或称插座式计算机。 从应用角度来看,也可称为家用服务器,或称袖珍一体机。插头电脑自问世以来,由于其新颖的外观引起用户的广泛兴趣,开发者社区也因此形成。它的性能如何?用途何在?如何使用?本文介绍插头电脑的性能、功用、组成、特点和典型应用举例。 设计理念 插头电脑 (Plug Computer) 是一个小型的低功耗服务器,主要目的是为家庭或者小型企业提供基于网络的服务。它能够在家里给计算设备作为数据服务和媒体应用,也能作为消费设备和互联网服务之间的搭桥。 插头电脑经过一年的市场体验,现已进入第三代。随着移动互联网的发展和应用的多元化,消费者随
[嵌入式]
详解插头电脑的功能与应用
快速学Arm(13)--看门狗(WatchDog)
WatchDog,中文为 看门狗 ,老外起的名字有时很有趣也很贴切,这些从事技术的老外对生活总是充满了乐观的态度,把工作当成乐趣而不要认为他是痛苦的事情,这样才能把工作做好.否则就不要去做,不仅仅是为了不至于让你变得忧郁,关键是天天做自己认为痛苦的事情,其最终的结果往往也是痛苦的. 一样,我总是喜欢用自己的理解而不是无聊的术语来讲解我所理解的东西.WatchDog是为了能够防止程序跑飞而使用的一种东西.如果你的程序没有跑飞,那么你的程序会定时的去喂的看门狗,如果你的程序跑飞了,那么就不会再去喂狗了,如果超过了喂狗的时间,那么狗就会自己生成一个信号来重新reset你的CPU,重新开始.这是一种在很重要的情况下防止系统跑飞的一种方
[单片机]
快速学<font color='red'>Arm</font>(13)--看门狗(WatchDog)
ARM-GCC-LD脚本
从以前的经验,链接脚本是嵌入式开发,单片机开发相当重要的一个东西。它完成的工作是做PC机软件的同志们不用关心的,但是也是很复杂的一项工作。总结来看链接脚本要告诉连接器 1:输出什么 2:输入是什么,那么obj文件 3:要用什么库,库放在什么地方 4:内存分布地址 5:提供启动代码一些全局地址变量 一般来说链接脚本需要搞清楚这几样事情后才能编写,那arm-gcc-ld的脚本也一定要实现这些功能。对于大多数的链接器来说,对于简单的项目不需要脚本,只是使用命令参数就可以完成了。 MEMORY: 它是用来补充SECTIONS命令的,用来描述目标CPU中可用的内存区域。它是可选的,如果没有这个命令,LD会认
[单片机]
s3c2440学习笔记——重定位和链接脚本
————————————————————————————————————— 今天温习了韦老师有关代码重定位的视频,小结一下所得。 什么是重定位? 通俗地讲,就是将代码复制一份到其他地方。 以我的jz2440为例,假设开发板为nor启动(板载nor flash有2M大小且地址是从0x0000_0000开始),则我所烧录的bin文件会从nor flash的0地址开始执行。nor flash有个特性——不可直接进行写操作,因此如果我的代码里包含了一些全局变量(通常放在data或rodata段),那么我是无法改变它们的。这时候就可以通过重定位来进行操作,即我把这些全局变量复制一份到SDRAM(即内存),那么我可以通过访问内存来进行相关读写
[单片机]
基于ARM7处理器LPC2119的USB-CAN转换器设计
引言 控制器局域网(controller area network,CAN)是20世纪80年代德国BOSCH公司为现代汽车应用而推出的一种多主机局部网,由于CAN总线具有可靠性高、功能完善、成本合理、实时性等优点,CAN总线早已不再局限于汽车行业,而被广泛应用于各个自动化控制系统中,例如汽车电子、工业控制、智能大厦、安防监控、环境控制等。目前CAN总线是国际上应用最广泛的现场总线之一。通用串行总线(universalserial bus,USB)作为一种协议规范,是以Intel为首的7家计算机及通信产业厂商公司于1994年11月共同提出,其除具有使用方便(即插即用)、功耗低、数据传输率高等优点外,还具有软硬件支持广泛、功耗低、
[单片机]
基于<font color='red'>ARM</font>7处理器LPC2119的USB-CAN转换器设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved