SNMP网管板使用了RTL8019AS 10M ISA网卡芯片接入以太网。选它的好处是:NE2000兼容,软件移植性好;接口简单不用转换芯片如PCI-ISA桥;价格便宜2.1$/片(我的购入价为22元RMB/片);带宽充裕(针对51);较长一段时间内不会停产。8019有3种配置模式:跳线方式、即插即用P&P方式、串行Flash配置方式。为了节省成本,我去掉了9346而使用X5045作为闪盘存储MAC地址和其他可配置信息。P&P模式用在PC机中,这里用不上。只剩下跳线配置模式可用,它的电路设计参考REALTEK提供的DEMO板图纸。一天时间就可以完成,相对来说硬件设计比较简单。
与这部分硬件相对应的软件是网卡驱动。所谓驱动程序是指一组子程序,它们屏蔽了底层硬件处理细节,同时向上层软件提供硬件无关接口。驱动程序可以写成子程序嵌入到应用程序里(如DOS下的I/O端口操作和ISR),也可以放在动态链接库里,用到的时候再动态调入以便节省内存。在WIN98中,为了使V86、WIN16、WIN32三种模式的应用程序共存,提出了虚拟机的概念,在CPU的配合下,系统工作在保护模式,OS接管了I/O、中断、内存访问,应用程序不能直接访问硬件。这样提高了系统可靠性和兼容性,也带来了软件编程复杂的问题。任何网卡驱动都要按VXD或WDM模式编写,对于硬件一侧要处理虚拟机操作、总线协议(如ISA、PCI)、即插即用、电源管理;上层软件一侧要实现NDIS规范。因此在WIN98下实现网卡驱动是一件相当复杂的事情。
我这里说的驱动程序特指实模式下的一组硬件芯片驱动子程序。从程序员的角度看,8019工作流程非常简单,驱动程序将要发送的数据包按指定格式写入芯片并启动发送命令,8019会自动把数据包转换成物理帧格式在物理信道上传输。反之,8019收到物理信号后将其还原成数据,按指定格式存放在芯片RAM中以便主机程序取用。简言之就是8019完成数据包和电信号之间的相互转换:数据包<===>电信号。以太网协议由芯片硬件自动完成,对程序员透明。驱动程序有3种功能:芯片初始化、收包、发包。
以太网协议不止一种,我用的是802.3。它的帧结构如图1所示。物理信道上的收发操作均使用这个帧格式。其中,前导序列、帧起始位、CRC校验由硬件自动添加/删除,与上层软件无关。值得注意的是,收到的数据包格式并不是802.3帧的真子集,而是如图2所示。明显地,8019自动添加了“接收状态、下一页指针、以太网帧长度(以字节为单位)”三个数据成员(共4字节)。这些数据成员的引入方便了驱动程序的设计,体现了软硬件互相配合协同工作的设计思路。当然,发送数据包的格式是802.3帧的真子集,如图3所示。
有了收发包的格式,如何发送和接收数据包呢?如图4所示,先将待发送的数据包存入芯片RAM,给出发送缓冲区首地址和数据包长度(写入TPSR、TBCR0,1),启动发送命令(CR=0x3E)即可实现8019发送功能。8019会自动按以太网协议完成发送并将结果写入状态寄存器。如图5所示,接收缓冲区构成一个循环FIFO队列,PSTART、PSTOP两个寄存器限定了循环队列的开始和结束页,CURR为写入指针,受芯片控制,BNRY为读出指针,由主机程序控制。根据CURR==BNRY+1?可以判断是否收到新的数据包,新收到的数据包按图2格式存于以CURR指出的地址为首址的RAM中。当CURR==BNRY时芯片停止接收数据包。如果做过FPGA设计,用过VHDL,可以想象到硬件芯片的工作原理。此处,设计2个8bit寄存器和一个2输入比较器,当收到数据包时,接收状态机根据当前状态和比较器结果决定下一个状态,如果CURR=BNRY,进入停收状态;反之,CURR按模增1。8019数据手册没有给出硬件状态机实现方法,说明也很简略,往往要通过作实验的方法推理出工作过程。比如,ISR寄存器不只和中断有关,当接收缓冲溢出时,如果不清ISR(写入FFH),芯片将一直停止接收。在流量较大时溢出经常发生,此时不清ISR,就会导致网卡芯片死机。
明白了发送和接收数据包的原理,那么数据包又是怎样被主机写入芯片RAM和从芯片RAM读出的呢?如图6所示,主机设置好远端DMA开始地址(RSAR0,1)和远端DMA数据字节数(RBCR0,1),并在CR中设置读/写,就可以从远端DMA口寄存器里读出芯片RAM里的数据/把数据写入芯片RAM。
何谓本地/远端DMA呢?如图7所示,“远端”指CPU接口侧;“本地”指8019的硬件收发电路侧。没有更深的意思,与远近无关,仅仅为了区分主机和芯片硬件两个接口端。这里的DMA与平时所说的DMA有点不同。RTL8019AS的local DMA操作是由控制器本身完成的,而其remote DMA并不是在无主处理器的参与下,数据能自动移到主处理器的内存中。remote DMA指主机CPU给出起址和长度就可以读写芯片RAM,每操作一次RAM地址自动加1。而普通RAM操作每次要先发地址再处理数据,速度较慢。
在一些高档通信控制器上自带有MAC控制器,工作原理与8019的差不多,比如:Motorola 68360/MPC860T内部的CPM带有以太网处理器,通过设置BD表,使软件和硬件协同工作,它的缓冲区更大且可灵活配置。这些通信控制器的设计,体现了软硬件互相融合协同工作的趋势:软件硬化(VHDL),硬件软化(DSP),希望大家关注!
如图7所示,8019以太网控制器以存储器(16K双口RAM)为核心,本地和远端控制器并发操作。这种体系结构满足了数据带宽的需要。8019拥有控制、状态、数据寄存器,通过它们,51单片机可以与8019通信。由于51资源紧张,在实现TCPIP协议栈时不要进行内存块拷贝,建议(1)使用全局结构体变量,在内存中只保存一个数据包拷贝,其他没有来得及处理的包保存在8019的16K RAM里;(2)使用查询方式而不用中断;(3)客户服务器模型中服务器工作于串行方式,并发模式不适合51单片机。
芯片内部地址空间的分配如图8所示,其中0x00-0x0B(工作于8位DMA模式)用于存放本节点MAC地址,奇偶地址内容是重复放置的。如:MAC地址0000 1234 5678存放在0x00-0x0B中为000000001212343456567878,单地址和双地址的内容是重复的.一般使用偶数地址的内容,这主要是为了同时适应8位和16位的dma。Prom内容是网卡在上电复位的时候从93C46里读出来的。如果你没有使用93C46,就不要使用Prom,那么使用了93C46后如何获得网卡的地址呢?有两种方法,一是直接读93C46,二是读Prom。网卡MAC地址既不由93C46也不由Prom决定,而是由PAR0-PAR5寄存器决定。Prom只保存上电时从9346中读出的MAC地址(如果有93C46的话),仅此而矣。