基于ARM嵌入式近红外光谱仪器的研制

发布者:自由思考最新更新时间:2011-07-05 关键字:近红外光谱仪  ARM处理器  嵌入式系统 手机看文章 扫描二维码
随时随地手机看文章

    本文介绍了基于ARM微处理器的嵌入式近红外光谱仪器设计,并给出了仪器的软件和硬件的设计方案。

    设计应用了最先进的ARM嵌入式技术,利用ARM丰富的内部设备,实现了光谱数据的传输和基于触摸屏的人机交互平台。实现近红外光谱仪器操作简单化,体现了ARM微处理器的优胜之处。

    1.  引言

    近红外光谱主要是由分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团C-H、O-H、N-H等振

    动的倍频和合频吸收[1],具有丰富的物质结构和组成信息,非常适合用于碳氢有机物质的组成性质测量。近红外光谱作为迅速

    崛起的光谱分析技术在分析测试领域中起的作用越来越引起人们关注,由于样品在分析时基本不需要处理,且不破坏和消耗样品,

    自身又无环境污染,近红外光谱分析技术堪称是绿色分析仪器的典型代表[2],该技术已广泛应用于各领域包括农作物质量检测、

    食品成分分析、药物制剂分析、血氧的测定、石化工业分析、烟草行业中的应用等,是分析领域中最为活跃的热点。

    文中采用基于ARM9内核的嵌入式系统S3C2410A为核心开发近红外光谱分析仪器。 作为32位的RISC(Reduced Instruction Set Computing)架构,基于ARM核的微控制器芯片具有较高的运行速度、较大的地址空间、低功耗和高性价比,具备在其上运行一个完整的嵌入式操作系统的能力,已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场。利用ARM

    来开发近红外光谱分析仪器,以触摸屏作为人机交换平台,取代了传统的键盘,脱离了定标等分析软件对微机的依赖,最终使用户在指引下通过简单的操作对样品进行检测。

    2. 仪器结构与工作原理设计

    2.1总体结构

    本设计是基于ARM微处理器的滤光片型近红外光谱仪。总体结构如图(1)所示。光学系统中的光电检测信号经过ADC后,并行输入到单片机中进行初步数据处理,再由单片机串行发送到ARM微处理器中,利用ARM微处理器对光谱数据进行定标和分析,以及实现对光学系统、打印机和显示操作系统的控制。

图(1)总体结构图

    2.2仪器光学原理结构

    在近红外光谱测量技术中,对于分立波长型仪器是测量几个特定波长的光谱数据,并建立样品浓度与这些数据的关系。滤光片型的近红外仪器属于分立波长测量仪器,设计分别选取了在近红外光谱区内的11块不同透射波长的窄带干涉滤光片作为光谱仪器的分光系统。工作原理是:由光源发出的光经过滤光片得到一定带宽的分析光,当光进入样品内部后,通过与样品内部的漫反射作用返回表面,由光电检测器进行检测。漫反射光是分析光和样品内部分子发生了相互作用后的光,因此负载了样品的结构和组成信息,可用于样品成分测量。在测量过程中通过对滤光片盘的转动来得到不同波长的光,从而实现分光。

    2.3 仪器的电学原理结构

    本设计分为光谱数据采集系统和嵌入式控制系统两部分。

图(2)电学原理设计图[page]

    2.3.1光谱数据的采集系统

    光谱数据的采集系统是由紧贴光传感器的ADC芯片和单片机来实现的。光谱信号的信噪比是仪器稳定性的重要指标。光谱数据采集系统要尽量避免光谱采集过程中噪声的引入和光谱信号的减弱,从而保证光谱数据采集的精度。因此,在光谱数据采集系统的设计中将ADC芯片紧贴光传感器,由单片机对光谱数据进行采集和初步处理后传输到ARM微处理器中,这样的设计可以减少数据的传输距离,避免因长距离传输而引入噪声,从而达到提高信噪比的目的。

    2.3.2嵌入式控制系统

    嵌入式控制系统采用的处理器是由SAMSUNG公司推出的16/32位RISC处理器S3C2410A。S3C2410A提供了丰富的内部设备其中包括:LCD控制,支持NAND Flash系统引导,3通道UART,4通道DMA, I/O端口,RTC,8通道10位ADC和触摸屏接口,IIC-BUS接口,USB设备,SD主卡&MMC卡接口,2通道的SPI以及内部PLL时钟倍频器等。S3C2410A采用了ARM920T内核,它的低功耗、精简和出色的全静态设计特别适用于对成本和功耗敏感的应用。利用ARM微处理器实现光谱数据的接收、定标、打印,人机交互界面和光学系统控制三大模块功能。

    光谱数据接收和数据打印都是利用ARM板中RS-232标准串口通信模块来实现。S3C2410内部具有两个独立的UART控制器,每个UART均具有16字节的FIFO,支持的最高波特率可达到230.4Kbps。对ARM中的串口的设置主要是通过编写串口通信协议程序来实现。本设计采用的是异步通信的格式。数据位写入主要是通过对8位数据传送接收缓冲区寄存器URXH1、URXH2的写入来实现,缓冲区寄存器寄放传送/接收的数据字符。在字符数据传送/接收过程中,数据位从最低位开始发送。数据位发送完后,不设置发送奇偶校验位,数据位之后发送的是停止位,设置停止位是通过清零c_cflag中的CSTOPB来实现。波特率设置通过函数cfsetispeed和cfsetospeed来实现,如本设计采用的是9600波率,可以通过cfsetispeed(&newtio, B115200);和cfsetospeed(&newtio, B115200);语句来实现波特率的设置。

    2.4光谱数据的精度控制

    光谱数据的精度是决定仪器优劣的一个重要指标,为了确保系统的光谱数据精度,设计通过增加采集信号精度,减少外界引入的噪声这两个方面来实现对光谱数据信噪比的提高。采集系统中ADC芯片采用了24位带数字滤波的ADC,精度可达224,在噪声控制方面,为了减少系统的噪声,设计中对光学以及电学系统都做了屏蔽。在光学系统的整个外壳喷上了黑漆,以避免外界光的干扰。在电学上减少了对有源器件的使用,并且每个有源器件都具有独立的屏蔽,以减少电噪声的引入。经过实验测量,设计中的光谱数据采集精度可达到4位半的精度。

    3.软件设计

    3.1基于ARM9下Linux系统的串口应用程序设计

    由于嵌入式控制系统中所选取的核心微处理器是植入了Linux 2.4.18内核的ARM9开发板,具体串口模块的打开以及读,写应用程序是由基于Linux下的C编程来完成。具体的流程图如下所示:

图(3)串口打开及设置流程图

    串口模块打开后,ARM微处理器通过串口模块与单片机、热敏打印机进行通信,实现对光谱数据接收和打印的功能。

    3.2基于嵌入式QT的人机交互界面应用软件设计

    人机交互界面主要是利用基于Linux下的图形界面设计开发工具Qt/Embedded来实现。QT是挪威Trolltech 公司的一个标志性产品。它的开发语言是C++.,它为跨平台的软件开发者提供统一的,精美的图形用户编程接口,还提供了统一的网络和数据库操作的编程接口,这使得Linux这些操作系统以更加方便、精美的人机界面走近普通用户。Qt/Embedded是以原始的QT为基础,做出了许多调整以适用于嵌入式环境。Qt/Embedded是面向嵌入式系统的QT版本,是QT的嵌入式Linux窗口,是完整的自包含C++ GUI和基于Linux的嵌入式平台开发工具。

    光谱采集定标应用软件设计包括了编译环境的建立和应用软件程序的编译两个部分构成。

    3.2.1编译环境的建立

    完整建立交叉编译环境需要用到的软件工具包包括:tmake-1.11或更高版本的tmake工具包、Qt/Embedded2.3.7安装包和Qt2.3.2 for X11版的安装包。首先将tmake-1.11工具包解压,得到tmake工具。tmake工具是用于生成应用程序中的Makefile。

    然后安装Qt/X11 2.3.2用于生成应用程序界面设计工具designer和应用程序界面的C++源程序、头文件的转化工具uic。其中必

    须注意的一点是uic和designer工具的源文件会和Qt/Embedded的库一起编译,所以根据“向前兼容”的原则,Qt for X11 的版本应比Qt/Embedded的版本旧。最后是对基于X86架构下的Qt/Embedded和基于ARM架构下的Qt/Embedded库进行编译,分别得到基于主机PC下的QTE编译库和基于ARM目标板下的QTE编译库。

    3.2.2应用软件程序的编译

    光谱采集定标应用软件程序编译利用Qt/X11中的designer工具进入QT图形界面设计器进行界面设计,生成以ui为后缀的界面图形文件。再利用uic工具生成图形界面文件所对应的C++源码及头文件。用vi建立应用软件的主程序和项目文件用于说明相关文件间的依赖关系。利用tmake工具生成应用软件的Makefile,最后通过g++交叉编译生成基于ARM架构下的可执行光谱采集定标应用软件程序的二进制文件,将其挂载到ARM板下便可运行。用户通过点触触摸屏就可以对测量的样品进行测量和定标。下面是软件具体的设计流程图。

图(4)软件工作流程

    4.结束语

    本设计利用了ARM开发板的丰富接口模块实现了近红外光谱仪器的光谱数据采集和打印机的控制。并通过QT编程实现了基于触摸屏的人机交互平台,使用者通过简单的点触操作就可以对一些物质进行分析。基于ARM微处理器的嵌入式近红外光谱仪器使用和操作更为简便是本设计的一大亮点,并且该嵌入式系统可加用于其它类型的光学系统,形成不同类型的光谱仪器,具有一定的普遍适用性。

    本文作者创新点:在光谱数据采集系统中采用了24位带数字滤波器的ADC,使到仪器的精度有了一定的提高, 光谱数据采集精度可得到4位半。另一方面在仪器的嵌入式控制系统中选用了ARM微处理器取代了以往的单片机,使到定标等分析软件脱离对微机的依赖。

    5.参考文献

       [1].王燕岭.《近红外光谱技术基础理论与应用综述》[Z].北京英贤仪器有限公司,2004,4

       [2].严衍禄,赵龙莲,韩东海.《近红外光谱分析基础与应用》[M].第一版,中国轻工业出版社,2005

       [3].周蓓,王典洪,宋俊磊.ARM在信息家电方面的应用[J].微计算机信息,2006,2-2:126-128。

       [4].《SAMSUNG S3C2410A中文数据手册》[Z].杭州立宇泰电子有限公司

 

 

关键字:近红外光谱仪  ARM处理器  嵌入式系统 引用地址:基于ARM嵌入式近红外光谱仪器的研制

上一篇:基于ARM44B0x的信号发射机控制器设计
下一篇:基于ARM和DSP的嵌入式智能仪器系统设计

推荐阅读最新更新时间:2024-03-16 12:38

嵌入式系统及其在医疗仪器设备中的应用
嵌入式系统是先进的计算机技术、半导体技术、电子技术以及各种具体应用相结合的产物,是技术密集、资金密集、高度分散、不断创新的新型集成知识系统。   文中介绍了嵌入式系统的特点及发展,提出了在嵌入式系统开发过程中应遵循的原则,并介绍了嵌入式系统在医疗仪器设备中的应用。   嵌入式系统是计算机技术、通信技术、半导体技术、微电子技术、语音图像数据传输技术,甚至传感器等先进技术和具体应用对象相结合后的更新换代产品,反映当代最新技术的先进水平。嵌入式系统是当今非常热门的研究领域,在PC市场已趋于稳定的今天,嵌入式系统市场的发展速度却正在加快。由于嵌入式系统所依托的软硬件技术得到了快速发展,因此嵌入式系统自身获得了快速发展。根据美国嵌入式系
[工业控制]
嵌入式系统中的Flash存储管理
摘要:以TRI公司的基于NOR Flash的Flash管理软件FMM为例,详细介绍嵌入式系统中如何根据Flash的物理特性来进行Flash存储管理。 关键词:嵌入式系统 Flash FMM 引言 在当前数字信息技术和网络技术高速发展的后PC(Post-PC)时代,嵌入式系统已经广泛地渗透到科学研究、工程设计、军事技术、各类产业和商业文件艺术、娱乐业以及人们的日常生活等方方面面中。随着嵌入式系统越来越广泛的应用,嵌入式系统中的数据存储和数据管理已经成为一个重要的课题摆在设计人员面前。 Flash存储器作为一种安全、快速的存储体,具有体积小、容量大、成本低、掉电数据不丢失等一系列优点。目前已经逐步取代其它半导体存储元件,成为
[缓冲存储]
基于单片机的嵌入式系统网络接入方案
  引言   在网络技术应用日益广泛的今天,网络传输是最经济有效的 数据 传输方式。如何利用廉价的51 单片机 来控制网卡芯片进行数据传输,加载TCP/IP 协议 连接到互联网,实现网络通信成了众多设计者的目标。但由于指令及资源的限制,实施过程会有许多困难。我们在设计方案中舍弃了耗费资源的高级协议,采用发送小数据包的方式以避免分段,来简化TCP协议和UDP协议,实现互联接入。   硬件设计与实现    系统 的硬件结构框图如图1所示。本系统的微控制器是Winbond公司的78E58,网络接口芯片是与NE2000系列兼容的Realtek公司的RTL8019AS。RTL8019AS内置了10BASE-T收发器,外接一个隔
[网络通信]
嵌入式系统硬件抽象层的原理与实现
    摘要: 板级支持包(BSP)是嵌入式系统中常用的硬件抽象形式,是介于操作系统和硬件之间的软件层次。介绍BSP的功能和特点,并结合工作实践提出了设计BSP的一般方法;最后针对当前嵌入式系统中BSP的设计方法所面临的问题提出了可行的解决办法。     关键词: 嵌入式系统 嵌入式实时操作系统(RTOS) 硬件抽象层(HAL) 板级支持包(BSP) 随着计算机硬件技术的快速发展,出现了越来越多的便携设备和智能设备。这些设备中通常包含控制用的CPU和相应的操作系统;这类特殊的计算机系统叫做嵌入式实时系统。嵌入式实时系统以其简洁高效等特点在计算机、通信等领域中广泛使用。 由于嵌入式实时系统应用环境的特
[应用]
基于S3C44B0的嵌入式系统在电子警察中设计与应用
引 言   随着城市交通的迅速发展,机动车流量急剧增加,使得交通管理面临着新的挑战,由于某些驾驶员交通法律意识淡薄,为达目的闯红灯行驶,特别是在无交警值守的区域,问题更为严重。电子警察系统,就是将在交通路口抓拍到的违章照片传回控制中心,进行分析处理和保存,并作为违章证据处罚违规的司机。电子警察系统在实现警务工作网络化、现代化、智能化进程中有着重要作用。电子警察一般由三大部分组成,一是照片拍摄部分;在红灯信号期间,控制器控制数码相机拍摄违章车辆照片,并存储到相机存储卡上。二是照片传输部分;将数码相机存储卡中的相片传送回监控中心。三是照片处理部分;在控制中心,工作人员将照片进行统计处理。照片传输部分常用的方法有人工取图、基于PC的工控机
[单片机]
基于S3C44B0的<font color='red'>嵌入式系统</font>在电子警察中设计与应用
医疗设备中的嵌入式系统开发策略
  在 嵌入式系统 开发和应用过程中,差异化也许是最有趣的事。每台设备都有独特的硬件和软件架构及其自身的独特功能。因此,要设计出可满足如此广泛要求的软件开发工具和操作系统就成为一个艰巨挑战。在严峻的经济条件下,对开发商来说,若因外包使其核心竞争力受损则绝非明智之举。但作为开发者毕竟更愿意外包那些可以从商业渠道获得的不具差异化特征的组件(图1)。 图1、医疗电子设备设计周期内多达30%的时间花在非差异性工作上。   嵌入式设备市场存在可广泛涵盖的某些共同特性。 医疗设备 和仪器就是其中越来越重要的一个领域。在现代化的医疗机构内, 电子技术 应用的范围之广、数量之多是“触目惊心”的。医疗设备和系统的范围从庞大的要占
[医疗电子]
医疗设备中的<font color='red'>嵌入式系统</font>开发策略
ARM处理器的工作状态
在ARM的体系结构中,可以工作在三种不同的状态,一是ARM状态,二是Thumb状态及Thumb-2状态,三是调试状态。 1、ARM状态 arm处理器工作于32位指令的状态,所有指令均为32位 2、thumb状态 arm执行16位指令的状态,即16位状态 3、thumb-2状态 这个状态是ARM7版本的ARM处理器所具有的新的状态,新的thumb-2内核技术兼有16位及32位指令,实现了更高的性能,更有效的功耗及更少地占用内存。总的来说,感觉这个状态除了兼有arm和thumb的优点外,还在这两种状态上有所提升,优化。 4、调试状态 处理器停机时进入调试状态。 5、arm与thumb间的切换 1、由arm状
[单片机]
基于ARM体系的嵌入式系统BSP的程序设计
ARM公司在32位RISC的CPU开发领域不断取得突破,其结构已经从V3发展到V6。 BSP(Board SupPORT Package)板级支持包介于主板硬件和操作系统之间,其功能与PC机上的BIOS相类似,主要完成硬件初始化并切换到相应的操作系统。BSP是相对于操作系统而言的,不同的操作系统对应于不同定义形式的BSP,例如VxWorks的BSP和Linux的BSP相对于某一CPU来说,尽管实现的功能一样,可是写法和接口定义是完全不同的。另外,仔细研究所用的芯片资料也十分重要,例如尽管ARM在内核上兼容,但每家芯片都有自己的特色。所以这就要求BSP程序员对硬件、软件和操作系统都要有一定的了解。 本文介绍基于ARM体系的嵌
[单片机]
基于ARM体系的<font color='red'>嵌入式系统</font>BSP的程序设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved