ARM:低调的隐形超级芯片帝国,谁在革英特尔的命

发布者:安静的夜晚最新更新时间:2011-12-06 关键字:ARM 手机看文章 扫描二维码
随时随地手机看文章

ARM是谁?

ARM,诞生于剑桥,距离剑桥大学十英里远的乡间。

ARM,成为微软公开认证的英特尔对手。

然而,ARM究竟是谁?

一、ARM—低调的隐形超级芯片帝国

ARM从没生产过一颗芯片,但它却像是一个隐形芯片帝国。去年全球有61亿颗芯片采用ARM架构(ARM inside),ARM以市占率28%,成为全球第一大半导体硅知识产权授权公司。从手机到洗衣机,从汽车到电视,只要使用到芯片,平均全球每四颗芯片,就有一颗来自ARM血统。

从苹果、三星(Samsung)到宏达电(HTC)的智能手机,甚至联发科的山寨机,都要向ARM进贡。全世界每卖出一支智能手机,里头就有五至六颗芯片使用ARM专利,平均每支智能手机,要向ARM缴交大约0.5美元专利费。以每支手机使用五至六颗芯片计算,一颗芯片的专利费仅新台币两元多,五元硬币还有找,数字小到让IC设计公司没感觉。

它赚的钱虽小,量却惊人!全球95%手机,都缴专利费给它。从事微处理器硅知识产权(IP)授权的ARM,就是各种芯片背后的设计脑袋,ARM是全球手机芯片的霸主。

二、不败的ARM模式,联合企业扳倒英特尔

Intel CEO:ARM模式挣不了钱?

人们通常存在这样的潜认识:英特尔是PC芯片霸主,而ARM在最近几年呈现出智能手机应用处理器架构的霸主风范,但实际上,英特尔与ARM的竞争由来已久。并且最近这场战争急剧升级:英特尔发布了Moorestown平台并起军进入智能手机领域,终于迎来了与ARM的直接交锋。

英特尔发布了新版Atom Z6xx处理器,称可用于智能手机和平板电脑等设备,新版Atom能耗低,性能强于ARM处理器。但是业内分析师指出,尽管面向智能手机市场推出了新版Atom处理器,但成功的可能性不大。英特尔虽然是全球最大处理器厂商,但进军智能手机市场还是有难度的。首先,传统的智能手机厂商已经与零部件厂商建立了稳定的合作关系,不会轻易改变供货商。其次,Atom处理器基于x86架构,该架构或只适合平板电脑。相比之下,ARM处理器是智能手机的首选芯片。

欧德宁同样批评剥离多个参与方(包括PI许可人、芯片设计方和晶圆厂)价值创造的业务模式不如自家的业务模式。“如果你看看英特尔的毛利率,再看看芯片代工厂商的毛利率,如果你正在构建基于ARM或是基于MIPS的器件会让你明白,我们要高得很多。我们通过自己的知识产权和芯片来创收。对我来讲,这是一种更好的价值主张,” 欧德宁进一步表示,“在那种[IP授权]环境下,很赚钱”。事实果真如此吗?

ARM入侵x86老巢,成功才刚刚开始

“虽然对现状非常满意,但我们的成功才刚刚开始”。总部位于聚集有全球各地莘莘学子的大学城剑桥的英国ARM控股公司创始人之一都德·布朗(Tudor Brown)总裁如是说。

也许有读者不知道ARM这个企业,那就请您记住这家公司,这对您绝对不会有坏处。因为,ARM确立了独特的商业模式,作为与美国英特尔公司不相上下的半导体产业的核心企业,该公司的地位在不断增强。半导体MPU(超小型运算处理装置)可以说是数字产品的心脏,而设计MPU的企业正是ARM。

虽然该公司2010年的销售额才不过4亿660万英镑。但对于美国苹果、美国谷歌、韩国三星电子、日本索尼以及任天堂等全球著名IT企业来说,ARM的存在已经不可或缺。Gartner Japan的首席分析师山地正恒指出,“由于ARM的MPU耗电量较低,适合用于智能手机、平板终端以及游戏机等便携终端,因此扩大了份额”。

“Wintel”的垄断地位开始瓦解

便携终端市场是一个快速增长的市场,美国苹果、谷歌和微软(MS)在该市场上不断进行着激烈的份额之争。在胜败的反复交替中,唯一不变的就是无论胜者是谁,ARM都不会成为败者。

ARM的势头甚至会改变长期以来支配IT产业的“Wintel”。Wintel一词取自个人电脑操作系统(OS)“Windows”和提供核心硬件MPU的Intel,这是一个象征着两公司“亲密无间”和在IT市场上寡头垄断的词汇。

但在2011年1月,微软宣布其新一代OS“Windows8”除英特尔的产品外,还可在ARM的MPU上运行。英特尔之所以强大,主要在于其对支持Windows的MPU的技术垄断。而现在,有一半的份额被ARM夺走了。

起因是采用ARM公司MPU的iPhone和Android终端开始进入微软曾经“独霸天下”的个人电脑市场。微软判断,要想通过最早估计会在来年上市的Windows8进行反击,就必须与ARM合作。

而ARM计划以涉足个人电脑业务为契机,进军要求更高性能MPU的服务器领域。美国调查公司IDC预测,采用ARM公司MPU的个人电脑全球份额在2015年之前将扩大至13%。

目前,ARM已经在几个方面超过了英特尔。例如,ARM面向智能手机、平板终端、家电、游戏机以及汽车等多种用途设计的半导体每年约供货61亿个。而根据Gartner的统计,英特尔的供货量为3亿2000万个左右,其中大部分面向个人电脑和服务器。营业利润率方面,英特尔为32.1%(2011年4~6月期),而ARM为44.5%(2011年4~6月期)。虽然英特尔也开发出了低耗电量MPU,并面向家电和便携终端销售,但ARM的地位目前并没有受到动摇。

ARM为何能在与英特尔的竞争中取胜呢?

答案是ARM构筑的特殊的商业模式。

ARM日本法人的社长西岛贵史介绍说,“ARM的周围存在数十万亿日元的业务”。目前被称为SoC的片上系统,除了MPU外,还在一枚芯片上集成了负责存储器管理和通信等多种功能。ARM就在从事其中的MPU设计。

面向家电厂商和汽车厂商供货的SoC是由半导体厂商为其附加MPU以外的各种功能后开发制造和销售的。ARM的收入来源是向各厂商收取授权费,以及根据半导体供货数量收取的每个数日元至10日元不等的专利使用费。处于核心位置的ARM虽然很小,但通过将周边的半导体厂商都裹卷进来,产生了巨大的离心力。

另外,从财务方面可见的特点是,ARM通过不自行生产的“无厂经营”方式。这是高收益的原因所在,但如果单就没有工厂这一点而言,从事半导体设计和开发,而把生产委托给代工企业(受托生产公司)的无厂半导体厂商也是同样的模式。只不过,ARM从事MPU设计这一核心业务,通过授权业务,实现了更加领先的商业模式。

如果换一种方式来理解ARM的业务,那就是有多达250家半导体企业将MPU设计外包给了ARM。与各公司分别开发相比,委托给ARM统一开发会更加节约成本。

而x86阵营的商业模式则截然不同。英特尔的x86技术架构对外是近乎封闭的,与另一家拥有小部分x86专利的厂商AMD之间也时有争讼。在这片领地里,实行的是一家企业负责从架构、设计、测试到生产的一体化全产业链模式。IBM前董事长郭士纳曾撰文指出,微软和英特尔组成了“Win-Tel”联盟,“英特尔公司几乎控制了PC微处理器领域。而其他所有的公司都围绕着主导型公司转”。这种商业模式下的英特尔,控制着行业的技术方向和价格趋势,成长为全球最大的半导体公司,也得以长期保持40%以上的毛利率。可正是这种模式使英特尔得了利益,却丢了朋友。

ARM与厂商的共谋发展

配备ARM公司MPU的SoC供货量在2010年约为61亿个,今后会进一步增加。如此之大的数量,仅凭一家公司终归无法生产,只有将其分散到众多企业之间,ARM的业务才能顺利推进。这自然而然地形成了可以称得上是“ARM经济圈”的一大网络。

ARM的成功还对处于同一经济圈中的半导体厂商的业务产生了巨大影响。

从事个人电脑用图像处理半导体业务的美国英伟达,现在还在涉足用于智能手机、平板终端和车载信息终端的半导体业务。随着Windows8对ARM的支持,该公司还将进军个人电脑用MPU领域。以通信、半导体为主力业务的美国高通也计划进军个人电脑市场。

对于日本企业而言,ARM的崛起则是各企业走向世界的机会。松下半导体公司系统LSI业务组长冈本吉史坦率地表示,“在我们宣布采用ARM的MPU开发电视用途高性能SoC后,来自海外企业的咨询便出现了增加”。

分享的经营哲学,让ARM产生一股“雪球效应”:雪球越滚越大,加入联军的人数越来越多。即使ARM小得像一只蚂蚁,ARM联军却已变成一支百万大军,拥有扳倒英特尔的巨大力量。[page]

三、ARM、英特尔未来之战:何以左右战局?

1)ARM未来在移动平台方面的Roadmap解读

根据ARM公司披露的公司未来处理器路线图,其中包括三款新ARM处理器“知识产权核心”,代号分别为Eagle、Heron和Merlin。

其中,Eagle属于高性能的Cortex-A系列,将是目前高端智能手机和智能本中常见的Cortex-A8/A9的后继产品,主要面向智能手机、移动计算、数字电视和通讯产品市场。Heron为面向嵌入式市场的Cortex-R系列,针对汽车发动机性能管理、基带芯片、硬盘控制器芯片等。而Merlin则是小尺寸低功耗Cortex M家族的一员,针对工业控制、嵌入式音频处理器等产品。

入门级手机市场,ARM将提供Cortex-A5处理器。它提供了与ARM11类似的性能,但功耗效率方面得到极大的提高。现在很多手机厂商正基于高通的MSM7225A/27A芯片做设计,它所采用的就是A5内核。

高端智能手机对性能的需求是无止境的,其处理器平台目前正从A8转向双核A9。号称“安卓第一机”的三星Galaxy S II就内置了双核A9处理器和Mali 400 GPU,性能相当出色。预计今年年底,首款ARM四核A15处理器也将问世,与之配套的Mali T600可支持OpenCL以及Microsoft Direct X。

其实,A15就是为了满足移动产品日益提高的性能需求而设计的,它将对移动产品的进步带来积极的推动作用。未来的大趋势就是手机平台在基带部分支持LTE,AP+GPU部分实现PC桌面级用户体验。A15与Mali T600的组合完全可以实现上述目标。

2011年11月,ARM公司发布了全新的Mali系列图形处理单元(GPU)Mali-T658,有望应用于高端智能手机、平板电脑、智能电视及汽车娱乐系统中。Mali-T658的出现,对于支持ARM在高性能智能手机,乃至服务器领域和英特尔进行强有力的竞争起到关键的作用。

2)英特尔的Roadmap解读

英特尔第四任CEO——贝瑞特,卸任前留给Intel有价值的是“Tick-Tock”计划。“Tick-Tock”是一个象声词,如果将正弦时钟波形在音箱中播放时,可以听到连续不断的“Tick-Tock”。Intel从2006年1月5日使用已经成型的65nm技术推出“Core Microarchitecture”,这也标志着Tick-Tock计划的开始。

在Tick-Tock中,Tick指工艺的提高,从65nm,45nm,32nm,22nm,16nm和11nm。数学功底稍微好些的人不难发现,相邻的两个数字之间的倍数大约是1.414【1.414约等于sqrt(2)。Intel使用这些数字的主要原因是继续捍卫摩尔定律】。Intel继续延续着摩尔提出的“集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍”的定律。Tock指CPU内核的进步,工艺的提高使得之前只能出现在经典论文中出现的技术得以实现。Tick-Tock计划规划了Intel x86处理器直到2016年的Roadmap。

Intel的Tick-Tock计划已经执行到Sandy Bridge处理器,Ivy Bridge 22nm架构处理器也很快将如期而至。Intel将以庞大的人力,充实的物力继续着这个计划。所有这一些都是贝瑞特留给Intel的第五任CEO保罗·欧德宁的。欧德宁必须有所作为。

PC领域再无对手的Intel,目光重新锁定在移动计算领域,Atom处理器应运而生。这颗芯片上承载着Intel的希望,所有人都在关注Atom能否解开Intel在移动领域的无奈,嵌入式领域的另一个处理器巨头ARM也在枕戈待旦。

测试显示,三栅极3D晶体管不能左右ARM英特尔战局?

公司之间的纷争有其独特的魅力。英特尔 VS AMD就是热议多年的话题,然后又变成微软 VS 谷歌。现在最有趣的一对是英特尔 VS ARM。英特尔发布三栅极3D晶体管之后,关于该技术能否左右二者之间的战局业界已有很多评论文章。

目前看来,ARM似乎肯定会采用平面的22nm工艺,而英特尔则会采用Tri-Gate三栅极3D晶体管。要评判三栅极晶体管能否为英特尔提供显著优势,先得回答一些问题:

·英特尔称22nm三栅极晶体管功耗比自己的32nm平面晶体管低50%。但22nm三栅极晶体管与22nm平面晶体管的功耗差异有多大呢?

·采用22nm三栅极晶体管之后,芯片能比采用22nm平面晶体管节省多少功耗?10%,30%,还是50%?

这些都不难估算,我们来做个测试。

晶体管级的计算

英特尔在自己的新闻发布会上展示了一些具体的晶体管I-V曲线。这些曲线在图1经过重制。根据这些数据你可以得到图2中的信息。你会注意到22nm 三栅极晶体管的电源电压能够比32nm平面晶体管低50%,但只比22nm平面晶体管低19%。

图2.三栅极晶体管和平面晶体管的晶体管级对比

芯片级计算

在这里采用开源的IC模拟器IntSim估算三栅极晶体管在芯片级所带来的好处。IntSim能够描述现代芯片各方面的模型,它对之前的英特尔微处理器的模拟结果也和实际数据非常吻合。更多细节请看图3以及2007年国际计算机辅助设计大会(ICCAD)上关于IntSim的原始论文。

这次研究选择了一个1GHz移动逻辑内核,该内核基于(1)22nm平面晶体管或(2)22nm 三栅极晶体管。由于英特尔只提供了晶体管数据的相对数字,这里选择采用国际半导体技术路线图(ITRS)的数字,并根据图2进行放大。IntSim的结果见图4。

图4.IntSim估算的节能情况

·三栅极所节省的140mW电源电压需求很实用,因为它可以同时降低时钟与线路耗电。时钟功耗与线路功耗减少28%。

·驱动电阻,等于电源电压比驱动电流。三栅极晶体管降低了这一电阻。这意味着线性电容更易驱动,同样性能要求下的栅也可以做的更小。这一点结合图2所示晶体管节省的功耗,使得逻辑门总共节省了28%的功耗。

·由于晶体管质量更好,中继器功耗降低32%。

总的来说,在22nm微处理器内核上采用三栅极晶体管能比平面晶体管降低约28%的功耗。这是非常显著的表现。

尽管,三栅极晶体管——这是一项了不起的技术成就。但这会对英特尔、ARM之战产生重大影响么?我想不会。

英特尔与ARM的较量仍有一些变数:

·ARM已经在移动领域尽占先机。我从自己的经历中学到的一点是,想取代已经在市场上扎根的技术或产品非常困难。

·英特尔x86采用CISC架构。高级RISC机器——ARM的全称(Advanced RISC machines)——采用RISC架构。RISC架构过去在移动领域每瓦能比CISC带来更好的性能。X86能追上么?

·英特尔的处理器工艺比ARM领先一代,这是非常重要的优势。

·ARM芯片一般都在远东的低成本晶圆厂生产。

·ARM芯片供应商远比x86更多。客户喜欢竞争,因为这样可以压低价格。

·谁将会更早的将其它突破性技术“投入生产”?比如3D的DRAM逻辑电路堆叠芯片或者单片(monolithic)3D?英特尔还是ARM?其中有些技术对移动芯片功耗、性能、裸片面积的帮助会比三栅极更大。

·英特尔的资源远比ARM阵营的厂商更多——这对它很有帮助。特别是在这个设计成本上亿美元、晶圆厂投资过五十亿美元、工艺研发需十亿美元的时代。

·微软会不会执行将Windows 8移植到ARM上的目标?如果执行的话,速度和效果又会如何?这对笔记本电脑和上网本来说意义重大,但可能不会对智能手机市场带来太大冲击。

三栅极晶体管是一次了不起的工程成就,但它能在英特尔与ARM纷争中扮演什么重要角色,却有待时间验证。

[page]

四、编者后记:PC王者英特尔、移动霸主ARM——交互式僵持的竞争…

通过两者Roadmap对比分析后,Intel采取的制程(Tick)与架构(Tock)交替更新战略是否会在未来的某一天对ARM产生威胁?

工艺确实可以降低功耗。未来A15可能会走到28nm,但在迈向更深工艺节点的时候,不一定纯粹靠工艺来解决功耗问题。A15性能提升必然伴随着功耗的增加,ARM的思路是可以通过多核、或者大小核异构化配置来获得功耗的优势,而不单纯依靠工艺。

假设某一天Intel通过生产工艺的改进使得和ARM的功耗差不多了,ARM的授权模式也会带来更大的竞争优势。许多企业可以提供基于ARM技术的处理器,他们既可以提供各种不同功能的产品,也可以共同分享回报;而Intel在该市场发展之初就把自己放在了众多公司的竞争面上。东方不亮西方亮,将这种此起彼伏、百花齐放的局面归结于ARM商业模式所带来的灵活性——在ARM的生态圈里,许多公司都有机会把自己的能力和智慧加入到这个产业链里面,带来的产品多样化优势比单一化的模式要强势很多。

计算机处理器厂商和手机芯片厂商井水不犯河水的均势被打破,对于这个移动互联网时代的新动向,如果可以用简单的话来概括其原因,那就是:手机和计算机走得越来越近了。英特尔现在致力的目标,就是从ARM牢牢占据的100%移动市场中中夺取一部分市场份额。面对PC业芯片老大的“捞过界”,ARM公司选择了针锋相对,正借力微软进行着ARM架构服务器的探讨。

到目前为止,英特尔和ARM都还没有在对方的市场形成实质性影响,但双方已经在PC和手机领域的交叉地带进行了交锋。在这片中间区域,先后出现了“上网本”(NetBook)、“智能本”(SmartBook)、平板电脑等多种差异化产品,截至目前的战况是:x86阵营取得了先机,但ARM阵营的势头更猛。交互式僵持的竞争,仍在继续…

 

 

 

关键字:ARM 引用地址:ARM:低调的隐形超级芯片帝国,谁在革英特尔的命

上一篇:TI推出ARM® Cortex™-A8微处理器解决方案
下一篇:在ARM处理器上移植uCOS II的中断处理

推荐阅读最新更新时间:2024-03-16 12:47

arm与单片机的区别?
1、软件方面 这应该是最大的区别了。引入了操作系统。为什么引入操作系统?有什么好处嘛? 1)方便。主要体现在后期的开发,即在操作系统上直接开发应用程序。不像单片机一样一切都要重新写。前期的操作系统移植工作,还是要专业人士来做。 2)安全。这是LINUX的一个特点。LINUX的内核与用户空间的内存管理分开,不会因为用户的单个程序错误而引起系统死掉。这在单片机的软件开发中没见到过。 3)高效。引入进程的管理调度系统,使系统运行更加高效。在传统的单片机开发中大多是基于中断的前后台技术,对多任务的管理有局限性。 2、硬件方面 现在的8位单片机技术硬件发展的也非常得快,也出现了许多功能非常强大的单片机。但是
[单片机]
基于ARM-Linux和CDMA的远程视频监控系统
0 引言 CDMA(码分多址)无线网络具有覆盖面广,高效、低成本的特点,CDMA网络的数据传输速率可达200kb/s,这里开发的嵌入式远程视频监控系统就是充分利用CDMA无线网络技术和嵌入式系统的特点而搭建的数据传输系统,特别适合边远偏僻或不具备常规网络传输条件的地方使用,例如车载视频监控系统、交通路口(车牌实时监视)及城市路灯的监控等。 1 嵌入式Linux系统 嵌入式系统是以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应对功能、可靠性、成本、体积、功耗要求严格的专用计算机系统,目前嵌入式系统已经无处不在,从汽车、家用微波炉、PDA(个人数字助理)、电视机、到工控生产现场、通信、仪器、仪表、汽车、船舶、航空、航天、军事装备
[应用]
ARM 汇编与C调用的若干问题(一般函数调用情况)
ARM 汇编与C之间的函数调用需要符合ATPCS,建议函数的形参不超过4个,如果形参个数少于或等于4,则形参由R0,R1,R2,R3四个寄存器进行传递;若形参个数大于4,大于4的部分必须通过堆栈进行传递。 R0 用来存放函数的第一个参数,R1用来存放第二个参数,R2用来存放第三个参数,R3用来存放第四个参数。其中R0还用来返回函数的调用结果,对应C函数里面的return value语句中的value 存放在R0中。 ARM堆栈的是满栈FULL STACK,SP指针指向的位置是存放有效数据的地方,若压栈新的数据,必须先改变SP,再向SP里面压入数据。下面结合博客 http://blog.sina.com.cn/s/blo
[单片机]
ARM9中计算MPLL的方法:
测试程序400M的算法: i = 2 ; //don't use 100M! switch ( i ) { case 0: //200 key = 12; mpll_val = (92 12)|(4 4)|(1); break; case 1: //300 key = 13; mpll_val = (67 12)|(1 4)|(1); break; case 2: //400 key = 14; mpll_val = (92 12)|(1 4)|(1); break; case 3: //440!!! key = 14; mpll_val = (102 12)|(1 4)|(1); bre
[单片机]
ARM异常向量表中LDR指令、LDR伪指令的来龙去脉
1、问题引出 在ARM开发中,异常向量表(或者称为中断向量表)处在一个关键的位置,因为它控制了ARM芯片复位时的跳转地址,也即是调到哪里去执行启动代码。一般来说,异常向量表的形式如下 p Vector: ; All default exception handlers (except reset) are ; defined as weak symbol definitions. ; If a handler is defined by the application it will take precedence. LDR pc, =resetHandler ; Reset
[单片机]
<font color='red'>ARM</font>异常向量表中LDR指令、LDR伪指令的来龙去脉
Linux下ARM 和单片机的串口通信设计
0 引言 数据采集系统中由于单片机侧重于控制,数据处理能力较弱,对采集的数据进行运算处理比较繁琐,如果通过串口与上位机通信,利用上位机强大的数据处理能力和友好的控制界面对数据进行处理和显示则可以提高设计效率。串口通信以其简单的硬件连接,成熟的通信协议,成为上下位机之间通信的首选。移植了Linux 操作系统的s3c2440 可以在Linux 环境下操作串口,降低了串口操作的难度,可以使开发者集中精力开发大规模的应用程序,而不必在操作底层设计上耗费时间。 1 硬件连接 s3c2440 是 三星 公司生产的基于ARM9 核的处理器,采用3.3 V 电压供电; C8051Fxxx 系列单片机是美国CYGNAL 公司推出的与8051
[单片机]
Arm芯片为何对苹果Mac如此重要
最近关于苹果Mac要转用ARM处理器的消息不胫而走。许多人都希望Apple在其Mac系列产品中迁移到自己的处理器。随着对ARM过渡的清晰认识开始出现,人们可能仍然想知道这意味着什么。苹果从英特尔转向ARM是什么意思?至关重要的是,是什么使这种过渡对Mac的未来如此重要? 总体而言,苹果从Mac上的Intel处理器转移到其他方面,与ARM无关,而更多地与Apple对其计算命运的控制力更大有关。 什么是ARM?它与苹果有什么关系? ARM Holdings是一家英国公司,负责设计和创建自己的CPU和其他芯片组。尽管ARM芯片为各种设备(例如Acorn Archimedes)供电的悠久历史,但如今,该公司及其大多数
[嵌入式]
<font color='red'>Arm</font>芯片为何对苹果Mac如此重要
Ceva 加入 Arm Total Design 加速开发面向基础设施和非地面网络卫星的端到端 5G SoC
Ceva PentaG-RAN与Arm Neoverse计算子系统相结合,降低5G SoC开发成本并缩短上市时间,从而使双方客户受益 帮助智能边缘设备更可靠、更高效地连接、感知和推断数据的全球领先硅产品和软件IP授权许可厂商 Ceva公司宣布加入Arm Total Design ,旨在加速开发基于Arm® Neoverse™计算子系统(CSS)和Ceva PentaG-RAN 5G平台的端到端5G定制SoC,用于包括5G基站、Open RAN设备和5G非地面网络(NTN)卫星在内的无线基础设施。 Neoverse CSS 是经过优化、集成和验证的平台,能够以更低成本和更快上市时间实现定制硅片设计。 它与Ceva
[网络通信]
Ceva 加入 <font color='red'>Arm</font> Total Design  加速开发面向基础设施和非地面网络卫星的端到端 5G SoC
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved