基于单片机平台的电池供电设备的微功耗设计

发布者:脑力激荡最新更新时间:2011-12-12 关键字:单片机  微功耗设计 手机看文章 扫描二维码
随时随地手机看文章

    对于大部分单片机系统,由于单片机的运行速度很快,单片机在工作的过程中有大量的空闲等待时间。在某些情况下,系统的等待时间甚至可以达到总工作时间的95%以上。在等待过程中,单片机不作任何工作,只是在踏步等待,或者在循环判断有无新的外部请求。在这个过程中,可以让单片机内部的大部分电路工作在休眠状态,可以大大地降低单片机的功耗。同时,也可以让有关的外部电路工作在休眠状态,这样就使整个产品的供电大大降低。产品的这种非连续工作的特点是微功耗设计的基本思路,此外,还要根据产品的特点醉意更多的设计细节。

  选择合适的CPU芯片是微功耗设计的关键

  目前的单片机种类很多,而且大都针对某一个特定的应用,可根据具体应用情况选择合适的单片机。在需要进行微功耗设计的应用中,可以根据下面的规则来选择:

  1. 选择尽可能减少外部电路的单片机。随着集成电路工艺技术的飞速发展,真正单片化的单片机系统已逐步成为主流产品。

  2. 注意比较工作电流和静态电流。由于工艺的不同,单片机内部工作电流、静态电流不尽相同,有的甚至相差很大。在选择单片机时,不但要考虑其工作电流,还要仔细考虑其在休眠状态下的静态电流。

  3. 通过比较可以看出,选用专用的低功耗单片机,可更加灵活地控制其功耗,在满足设计要求的前提下使其尽可能工作于最省电的模式。

  4. 选择合适的ROM、RAM。一般来讲,存储器越大功耗也越大。在满足设计要求的情况下,尽可能使用单片机内部的ROM、RAM。

  5. 选择合适的工作时钟频率。在较低的时钟频率下,单片机的功耗也较低。以MSP430F1121为例,当工作在1MHz的主频之下,典型电流消耗为300uA;而工作在4096Hz的主频之下,其电流只有3uA。

  6. 选择合适的IO管脚数,和合适的IO驱动能力和显示驱动能力。单片机驱动的IO管脚数越多,其功耗也就越大。

  7. 选择合适的单片机,实现真正意义上单片化,可以省去了大量的硬件开发调试工作,提高了工作效率,系统的可靠性、抗干扰能力得到了显著的改善,同时使系统成本降低,更加适合微型化和便携化,对降低系统功耗有着决定性的作用。[page]

  低功耗设计策略

  a. 使内部电路可选择性地工作

  一般,设计中不会用到全部的单片机内部电路,而那些没有用到的电路将产生额外的功耗。在需要进行微功耗设计的应用中,可以通过对内部特殊功能寄存器编程,选择使用不同的功能模块,对于不使用的功能模块使其停止工作,减少系统无效功耗。

  b. 产品的低电压设计可以降低产品功耗

  一般,单片机的工作电压越高,内部晶体管在放大区的工作时间也越长,单片机的功耗也就越大。由于采用先进的芯片生产工艺,使单片机的电压范围一般很宽,如可以在1.8V~5V电源电压范围内正常工作。为了降低系统功耗,可尽量采用低电压设计。

  单片机供电电压范围的放宽,可以进一步拓宽单片机的应用领域,尤其是便携式或掌上型设备中,可以放心地使用电池作为电源,而不必关心放电过程电压曲线是否平衡、在低电压下是否会影响单片机正常工作,更不必因电池供电而专门增加稳压电路,从而可减少大量的功率消耗。

  c. 在空闲状态时,采用低速时钟信号

  单片机的功耗与其工作频率成正比,系统运行频率越高,电源功耗就会相应增大。图1所示为Philips公司的80C31单片机Vcc上的电流与主时钟频率的关系曲线,可以看出随着单片机主时钟频率的增加,其Vcc上的电流也呈线形增加,则其功耗也随着主时钟频率的增加而增加。

  为更好地降低功耗,在许多单片机的内部集成了两套独立的时钟系统,即高速的主时钟和低速的副时钟,在不需要高速运行的情况下,可选用低速的副时钟,维持内部基本的定时要求。某些单片机的主时钟也可通过功能寄存器来重新设定,在满足功能需要的情况下,按一定比例降低主时钟频率,以降低电源功耗。可在程序运行的过程中,通过软件对特殊功能寄存器赋值在线改变时钟频率,或进行主时钟和副时钟切换。

  d. 尽可能工作在休眠模式

  为降低功耗,通常单片机都提供多种工作模式,当处于空闲时进入休眠模式,当有一个事件提出中断请求时,可以快速地返回到正常的运行模式,这样既可以保证系统节电,又不影响正常的工作。

  不同的单片机会有不同的工作模式,如51系列的单片机有空闲模式和掉电模式。在不同的工作模式中,单片机内核中某些功能模块将设置为休眠状态。如MSP430系列单片机有6种不同的工作模式,除了一种是正常的运行模式(active mode)以外,其余五种均是低功耗模式,在这些模式下可以分别将CPU、内部时钟、内部总线、直至内部晶振全部关闭,使单片机的耗电降为最小。只有发生中断请求或复位时,系统被唤醒进入正常运行模式。

  外部电路的微功耗设计

  单片机周边电路的微功耗设计十分复杂,对产品的整体耗电而言也非常重要。复杂,庞大的周边电路将会带来很大的电源消耗,因此,应尽量少选用外部电路,尽可能利用单片机内部的资源。

[page]

  作为一个用电池供电的设备而言,其静态功耗最好为几微安~几十微安,由于这部分电流是在待机状态下加在设备上,是常供电电流,在系统不工作的情况下将造成很大的电能浪费。因此在设计中,应该使外部电路最少,并减少外部电路在静态需要供电的部分。同时,还需要考虑以下问题:

  1. 系统中单片机以外的其它器件尽可能选用静态功耗低的器件,如尽量选用CMOS芯片,少用双极性的晶体管门电路,因为双极性电路需要一个恒定的维持电流,增加了电路的静态功耗。

  2. 按照芯片的要求,将不用的引脚接至地或者高电平,悬空的输入脚将会增大芯片的静态电流。

  3. 在IO管脚上尽量少用上拉或下拉电阻,这些电阻将消耗一定的静态电流。

  4. 数据采集的模拟部分的设计可以采用一种轨对轨(rail-to-rail)的BiCMOS运算放大器,如LMV824用于替代LM324时,电源可低至2.5V,单位带宽到5MHz,仅250μA/通道。

  5. 设计外部器件的电源控制电路,使外部器件或设备在不工作时关断供电,减少无效功耗。低功耗器件的价格一般稍高一些,如果价格允许,通常都可以找到相应的低电压、低功耗的替代产品。

  6. 多用电压驱动电路,少用电流驱动电路。例如,要显示运行结果、当前状态或控制信息,通常有LCD显示器、LED显示器两种选择。用LCD输出,一般只有几个微安的电流;而用LED则会有几十毫安的电流。

 

关键字:单片机  微功耗设计 引用地址:基于单片机平台的电池供电设备的微功耗设计

上一篇:组态王与单片机多机串口通信的设计
下一篇:基于单片机和FPGA的多功能计数器的设计

推荐阅读最新更新时间:2024-03-16 12:48

STM32F103系列单片机中的定时器工作原理解析
STM32F103系列的单片机一共有11个定时器,其中: 2个高级定时器 4个普通定时器 2个基本定时器 2个看门狗定时器 1个系统嘀嗒定时器 出去看门狗定时器和系统滴答定时器的八个定时器列表; 8个定时器分成3个组; TIM1和TIM8是高级定时器 TIM2-TIM5是通用定时器 TIM6和TIM7是基本的定时器 这8个定时器都是16位的,它们的计数器的类型除了基本定时器TIM6和TIM7都支持向上,向下,向上/向下这3种计数模式 计数器三种计数模式 向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时 向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时 中央对齐模式:从0开始向上计数,计
[单片机]
STM32F103系列<font color='red'>单片机</font>中的定时器工作原理解析
瑞萨电子推出升级版R-Car V3H,满足包括驾乘人员监控系统的最新NCAP要求
全球半导体解决方案供应商瑞萨电子集团(TSE:6723)今日宣布,推出最新升级版R-Car V3H片上系统(SoC),为智能摄像头应用带来显著提升的深度学习性能,包括驾驶员/乘客监控系统(DMS/OMS)、车载前置摄像头、环视系统以及最高可达Level 2+级适用于大部分车辆的自动泊车功能。升级后的SoC集成了实时域上的传感器融合、高达ASIL C级指标和针对智能计算机视觉进行优化的体系结构。它以极具竞争力的系统成本为OEM和一级供应商提供高性能、低功耗解决方案,并支持最新的NCAP 2020要求及向NCAP 2025 3星级技术路线图的迁移。 基于2018年2月发布的SoC,融合了用于卷积神经网络(CNN)的集成IP等最新识
[汽车电子]
基于51单片机设计控制的荧光舞
0 引言 传统的路边装饰和节日彩灯等是利用电路的串并联来完成的,缺少更加生动的图形和效果。本设计是由单片机STC89C52控制,通过C语言编程完成动作编排和LED光带的显示,结合演员的舞蹈表演,在和谐或动感的音乐背景下展现跨越时空的神奇表演。 2 系统的总体设计 本次设计是由两种思维出发完成舞蹈与程序控制LED光带显示,一种是设定模式,一种是即兴模式。其中设定模式的程序编写是由整个舞蹈的编排和音乐的选取决定,本次设计编排有10个舞蹈程序供选取。本次设计主要即兴模式的选择完全有4×4按键完成。这样不仅有利于系统本身功能的扩展,而且方便使用在更多的载体上。系统设计框图如图1所示。 2 系统的主要硬件设计 2.1 数据处理
[单片机]
基于51<font color='red'>单片机</font><font color='red'>设计</font>控制的荧光舞
基于单片机系统采用DMA块传输方式实现高速数据采集
   摘 要: 介绍一种基于单片机系统设计的DMA硬件电路,以字块传输方式与高速A/D接口。结合在数字式磁通表设计中的应用给出其硬件软件设计方案实例。     关键词: 单片机系统 直接存储器存取(DMA)方式 高速A/D     PC机中外设与内存储器之间数据直接传输的DMA功能以其高效、高速、CPU资源占用少等特点已被广泛应用,这一功能通过安装在主板上的专用DMA控制器芯片或集成在外围控制芯片来实现。单片机的应用领域也常常需要有高速数据传输或数据采集,虽然近些年单片机速度有所提高,仍然无法应付类似单脉冲信号捕获、周期信号频谱分析等需要采用高速A/D的场合。对于速率在100ksps以上的数据采集或传输一般的中断查
[工业控制]
IAR for Arm集成开发环境全面支持芯驰科技9系列SoC和E3系列MCU
IAR Embedded Workbench for Arm集成开发环境已全面支持芯驰科技9系列SoC和E3系列MCU 最新版 IAR Embedded Workbench for Arm 全面支持芯驰科技9系列SoC和E3 MCU 芯片,帮助中国汽车行业开发者打造强大的嵌入式开发解决方案 中国上海—2022年6月17日——全球领先的嵌入式开发软件工具和服务提供商IAR Systems日前宣布:其最新发布的IAR Embedded Workbench for Arm 9.30版本已全面支持芯驰科技9系列SoC和E3 MCU芯片。 国内领先的车规芯片企业芯驰科技致力于为未来智慧出行提供高性能、高可靠的车规芯片
[嵌入式]
IAR for Arm集成开发环境全面支持芯驰科技9系列SoC和E3系列<font color='red'>MCU</font>
ATtiny13 空闲模式
当SM1..0 为00 时,SLEEP 指令将使MCU 进入空闲模式。在此模式下,ATtiny13 CPU 停止运行,而模拟比较器、ADC、定时器 计数器、看门狗和中断系统继续工作。这个休眠模式只停止了clkCPU和clkFLASH,其他时钟则继续工作。 象定时器溢出等内外部中断都可以唤醒 MCU。如果不需要从模拟比较器中断唤醒 MCU, 为了减少功耗,可以切断比较器的电源。方法是置位模拟比较器控制和状态寄存器 ACSR 的 ACD。如果 ADC 使能,进入此模式后将自动启动一次转换。
[单片机]
基于80C51单片机位寻址编程
80C51单片机有位处理功能,可以对数据位进行操作,因此就有相应的位寻址方式。所谓位寻址,就是对内部RAM或可位寻址的特殊功能寄存器SFR内的某个位,直接加以置位为1或复位为0。 位寻址的范围,也就是哪些部份可以进行位寻址: 1、我们在学习51单片机的存储器结构时,我们已知道在单片机的内部数据存储器RAM的低128单元中有一个区域叫位寻址区。它的单元地址是20H-2FH。共有16个单元,一个单元是8位,所以位寻址区共有128位。这128位都单独有一个位地址,其位地址的名字就是00H-7FH。 这里就有一个比较麻烦的问题需要大家理解清楚了。我们在前面的学习中00H、01H。。。。7FH等等,所表示的都是一个字节(或者叫单
[单片机]
基于80C51<font color='red'>单片机</font>位寻址编程
基于C8051F350单片机的气体流量计检测仪硬件设计
气体流量计是较为常用的仪表设备。钟罩式气体流量标准装置是以空气作为介质,对气体流量计进行检定、校准和检测的计量标准装置。主要适用于速度式、容积式和差压式等气体流量计的检定、校准和型式评价工作,也可用于气体流量测量的研究工作。本文基于C8051F350单片机,改造现有的钟罩装置,设计一种气体流量计检测仪。 气体流量计检定技术概述 目前,气体流量计的检定方法广义上可分为直接测量和间接测量两种。 直接测量法的是用实际流体进行计量检定,其具体定义为用标准装置(标准流量计或计量器具)与被测流量计串联,通过比较两者测得流体的累积流量值,得出被测流量计测量误差的方法。实流检测法具有检定环境与工况环境一致、流量值准确可靠和真实反映被测流量计计
[单片机]
基于C8051F350<font color='red'>单片机</font>的气体流量计检测仪硬件<font color='red'>设计</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved