继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。在大多数的情况下,继电器就是一个电磁铁,这个电磁铁的衔铁可以闭合或断开一个或数个接触点。当电磁铁的绕组中有电流通过时,衔铁被电磁铁吸引,因而就改变了触点的状态。继电器一般可以分为电磁式继电器、热敏干簧继电器、固态继电器等。增强型PIC实验板上配置的继电器如图1所示。 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
图1 继电器实物图
固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。在此,我们以电磁继电器为例,介绍其用法。
继电器的控制电路
在单片机系统中继电器的控制一般通过一个三极管来驱动,典型的驱动电路如图2所示:
图2(a) 图2(b)
图2继电器的一般驱动电路
继电器电路中一般都要在继电器的线圈两头加一个二极管以吸收继电器线圈断电时产生的反电势,防止干扰。上图中AB为常开触点,AC为常闭触点。图(a)中当控制信号为高电平时,继电器常开触点吸合(AB导通),当控制信号为低电平时,继电器常开触点断开常闭触点吸合(AC导通)。在图(b)中控制信号极性正好与图(a)相反,本书配套实验板上就是采用这个电路。[page]
单片机控制继电器
从实验板原理图中,我们可以看到,单片机RD6脚与一个PNP型三极管基极相连,经三极管电流放大后,直接驱动继电器,继电器的开和关完全由三极管的基极电平进行控制。当单片机RD6口输出高电平,PNP型三极管截止,这时继电器不工作;反之为低电平的话,PNP型三极管导通,继电器得电吸合。
注:在实验中一定要注意安全!!!
在掌握了继电器的工作原理和驱动方法后我们来看一个单片机控制继电器开合从而控制电灯的例子。实验板上的电路原理图如下,读者可以将继电器的触点引出,用来控制220V的电灯(虚线右边部分)。将220V市由AD端输入,继电器控制电灯的亮灭。如左图右侧绿色接线端子即为板载继电器的常开、常闭端。
#include
void delay_1ms(void)
{
unsigned int n;
for(n=0;n<50;n++)
{
NOP();
}
}
void delay_ms(unsigned int time)
{
for(;time>0;time--)
{
delay_1ms();
}
}
[page]
void main(void)
{
TRISD=0X00;
while(1)
{
PORTD=0x00;
delay_ms(1000);
PORTD=0x40;
delay_ms(1000);
}
}
以上实验程序为继电器每隔1秒时间闭合、断开一次。
关键字:51单片机 继电器 控制系统
引用地址:
51单片机驱动继电器可以使用这样的几种芯片
推荐阅读最新更新时间:2024-03-16 13:01
与51单片机扩展有关的知识点
这些日子做项目,用到外部ram扩展,很是汗颜,很多基本知识点都不会,现在把不会的东西记下来,做个笔记,也和大家共享,学点知识,更好开发产品。 1.单片机中的关键字_at_:定义变量的存储地址。 2.这段程序是什么意思? #define XBYTE((char*)0x20000L) XBYTE =0x41; define XBYTE ((char*)0x20000L) 定义了XBYTE是个指向地址 0x0000L 的字符型指针(或者数组)变量XBYTE =0x41; 对数组XBYTE的第 0x8000个变量进行赋值,赋值为0x41。即对地址0x8000L的内存单元赋值为0x41。这说明你用的是带外部数据总线的51芯片,外部
[单片机]
51单片机ucos ii任务切换汇编代码分析(1)
ucos中任务切换函数都是汇编写的,属于“需移植”文件, 这个汇编文件名一般叫做:OS_CPU_A.ASM 要想看懂任务切换的原理,首先遇到的第一个难点,就是OS_CPU_A.ASM这个汇编文件里的一大堆不常见的汇编伪指令,搞懂这些指令是搞懂程序原理的第一步。 这篇文章先只分析这些汇编指令。 这个文件为ucos操作系统提供了4个API函数,分别是: PUBLIC OSStartHighRdy;函数功能:切换到已就绪的任务横纵优先级最高的那个任务中去 PUBLIC OSCtxSw ;函数功能:一般的上下文切换,ContextSwitch,上下文切换又叫任务切换 PUBLIC OSIntCtxSw ;函数功能:在
[单片机]
51单片机学习笔记———7.按键法配置定时器
如果用延时函数来对按键进行检测的话,会消耗单片机的内存,不是很好,于是我们有以下方法: unsigned char cnt1 = 0XFF; cnt1 = (cnt1 1)|KEY1; if(cnt1!=0x00) { KeyLock = 0; } else if (KeyLock==0) { KeyNum = 1; KeyLock = 1;//防止按键触发 }
[单片机]
C8051F020在LED显示控制系统中的应用
0 引言 在单片机系统设计中,LCM(液晶显示模块)人机交互界面的设计往往是很重要的一个环节。LCM可以用于智能仪器上的显示设定参数、状态提示符、检测结果和待输入参数等功能。本文结合电解质分析仪的设计要求,采用深圳市烨新达实业有限公司生产的YXD-12864A2LCM,研究并实现了以C8051F020 为基础的液晶显示的接口电路和程序设计,添加了按键系统,从而达到方便用户使用的目的。 1 电解质分析仪简介 本系统所设计的电解质分析仪(Electrolyte Analyzer)是一种具有高分辨率和高精度的仪器,可以与多种离子选择电极配套使用,可用自动方法测定样品中钾、钠、氯、钙离子的浓度和pH 值。其结构方框图如图1 所
[单片机]
采用可编程逻辑器件EPM7032实现自动交通控制系统
随着微电子技术的迅猛发展,可编程逻辑器件从20世纪70年代发展至今,其结构、工艺、集成度、功能、速度、性能等方面都在不断的改进和提高;另外,电子设计自动化EDA技术的发展又为可编程逻辑器件的广泛应用提供了有力的工具。目前,在数字系统设计中,已经可以借助EDA工具通过软件编程对可编程逻辑器件的硬件结构和工作方式进行重构,从而使得硬件设计兼有软件设计的灵活性和便捷性。本文介绍一种用Altera公司的可编程逻辑器件EPM7032,在MAX+PlusⅡ开发环境下采用VHDL语言以及ByteBlaster在线可编程技术来实现自动交通控制系统的方法。该设计中采用的自顶向下的设计方法同样适用于复杂数字系统的设计。 1 EPM7032器件的结
[嵌入式]
51单片机程序及调试步骤实战经验
我刚参加工作的时候,用的是stc 51单片机的,51单片机不像stm32那样可以通过st-link在keil上面在线仿真。 有时候出现bug的时候,非常难找问题,要一段一段屏蔽然后测试。 在刚开始接触开发的时候,我非常不习惯用在线仿真,大概是因为没用过。 记得有一次进了一家公司做行车记录仪,用的台产GRAIN的单片机。 那时候基本上没什么资料,就一个dada sheet和demo程序。 在开发之前,老大安排了给我一个任务,就是把这个仿真环境先给搭起来。 相当于是他们原厂没有的东西,让我去搞定,这个芯片是基于Fa626TE core的32位控制器。 网上的资料太少了,光是测试搭建这个环境花了半个多月,最后还没搭建出来。
[单片机]
总线智能仪表温度控制系统的设计
引 言 随着现场总线技术的发展,传统的模拟仪表逐步让步于智能化数字仪表,并具备数字化通信功能。 依据现场总线智能仪表技术的发展,设计了基于现场总线的氧化锆智能氧量分析仪,其温度控制系统采用了专家PID控制原理,提高了加热速度与准确性。 1 总线智能氧量分析仪结构 基于CAN总线的智能氧量分析仪以单片机C8051F040为中央控制器,系统扩展的外围电路及接口电路数量少,系统的可靠性及稳定性较高,系统功能扩展及软硬件升级比较方便。系统的硬件结构见图1。外围硬件电路主要包括六部分:系统校正、数据采集、温度控制、日历时钟、带触摸屏的液晶显示、CAN总线接口。 图1 系统硬件结构 带触摸屏的液晶显示器提供了一个强有力的人机接口,有
[单片机]
基于DSP在线式UPS不间断电源控制系统的研究
引言 随着计算机的普及和信息处理技术的广泛应用,不间断电源UPS在关键负载连接至公共电网方面扮演着重要角色。它们旨在为处于任何正常或异常实用电源条件下的负载提供清洁、持续的电源。德州仪器(TI)TMS320F28335 DSP为在线UPS设计提供增强的、经济高效的解决方案,可以高速执行多种控制算法,从而使实现高采样速率成为可能。 本文实现了基于TMS320F28335的不间断电源控制系统的设计,该系统能够在单芯片中实现在线UPS的多控制环路,从而提高集成度并降低系统成本。数字控制还为每个控制器带来可编程性、抗噪声干扰和避免冗余电压及电流传感器的使用等优点。DSP 可编程性意味着可以使用增强的算法更新系统以提高可靠
[嵌入式]