基于单片机的线阵CCD驱动及采集系统的设计

发布者:ShiningSmile最新更新时间:2012-07-02 来源: 现代电子技术 关键字:C8051F020  线阵CCD  Labview 手机看文章 扫描二维码
随时随地手机看文章
0 引言
    在如今的科研和工程上,CCD的应用越来越广泛,但是其驱动脉冲和信号的采集的要求较高,一般需要CPLD或者DSP等比较复杂的微控制器来承担主要控制任务。这些方案较单片机而言,操作难度大,起点高,而且成本相对较高,然而单片机因为种种限制,很少有合适的驱动和采集方案,一些己发表的论文中,虽然提出了概念,但是经测试,很难实施,所以本文提出了一种新型的利用单片机驱动CCD的方案,此方案基于C8051F020单片机,能够对CCD进行良好、高速的驱动,同时进行采集,并通过RS232接口与电脑通讯,在电脑上重组数据,完成对光信号的分析等功能。经实验,本方案效果良好,同时,本方案采用Labview进行人机交互界面的设计,灵活性高,能够根据需要,将CCD改变成位置传感器等其他用途。

1 CCD简介
1.1 CCD基本原理
    CCD(电荷耦合元件)是一种半导体器件,由许多排列整齐的电容组成,能感应光线,并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给它相邻的电容,最终通过脉冲的控制,逐个测量每个电容的电荷量,得到光强值。
1.2 TCD1206型线阵CCD引脚及主要参数
    本设计采用的是TCD1200D型线阵CCD传感器。TCD1200D是一种高灵敏度、低暗电流、2160像元的线阵CCD图像传感器。该传感器可用于传真、图像扫描和OCR。该器件的内部信号预处理电路包含采样保持和输出预放大电路。它包含一列2160像元的光敏二极管,当扫描一张B4的图纸时,可达到8线/毫米(200DPI)的精度。其引脚及原理如图1所示。

c.JPG


    TCD1200D线阵CCD传感器特性:
    ·像敏单元数目:2160像元
    ·像敏单元大小:14×14×14 μ m(相邻像元中心距为14 μ m)
    ·光敏区域:采用高灵敏度PN结作为光敏单元
    ·时钟:二相(5V)
    ·内部电路:包含采样保持电路,输出预放大电路
    ·封装形式:22脚DIP封装。[page]

1.3 TCD1200型线阵CCD驱动采集脉冲要求
    该型号的CCD驱动需要发送SH、φ1、φ2、RS等脉冲,而采集需要差分OS和DOS两路信号,具体脉冲要求如图2所示。

d.JPG


    其中SH为积分脉冲,高电平的时候,CCD像元开始累积电荷,低电平的时候停止积累;φ1、φ2为两路反相的驱动脉冲,其主要作用是控制电荷的转移;RS为信号触发脉冲,每个下跳沿会触发一个像元释放电荷,从而将电信号输出;OS则是输出信号,在经过13个哑元输出和光屏蔽输出后,输出有用信号;DOS则是参考电平信号,与OS差分之后,得到最终的信号输出。这些脉冲的要求频率高(例如RS典型频率参考值是1 MHz),相互之间匹配要求高,因而一般单片机的操作难以完成。

2 硬件电路设计
    如图2所示,CCD的驱动需要发送包括SH、φ1、φ2、RS等4个驱动脉冲,其中RS的频率范围是0.02MHz到2MHz,典型值是1MHz。这种高频率的脉冲,对单片机来说,难以独立完成,所以本系统选用了一定的数字电路进行辅助设计。同时由于C8051F020单片机的A/D转换最高值为500kHz,而CCD发送模拟信号的频率(即OS的频率)与RS相同,所以RS的频率亦选为500kHz。
    具体方案是用单片机自带的PCA模块发送稳定的1MHz的方波脉冲,然后通过D触发器(74HC74芯片)进行2次分频,获得5V、0.5MHz和0.25M Hz的方波脉冲(两种频率都各有两路电平总是相反的脉冲),其中0.5MHz脉冲作为RS驱动脉冲,0.25MHz的两路脉冲分别作为φ1和φ2的脉冲。同时用定时器2检测RS,进行计数,确定SH的积分时间,发送符合要求的SH脉冲,同时SH的脉冲需要一个反相器,进行电平转换(3V~5V),和发送D触发器的控制脉冲。对于DOS的采集,本系统选用的是用OP27搭建的减法器和跟随器进行采集。
    CCD的脉冲控制和信号A/D转换工作主要由C8051F020单片机完成。如前所述,TX0和RX0配置在P0.O和P0.1,进行RS232通讯;由P0.2口(PCA)发送1 MHz的稳定方波脉冲;P0.3(T2)进行RS (0.5 M Hz)的计数;A/D转换触发控制位(CNVSTR)连入引脚P0.4;P0.5通过定时器2控制,发送SH脉冲;P1.1为模拟输入口,接收模拟信号。

[page]

3 人机交互界面软件设计
    本系统的软件设计包括C8051微控制器的应用程序和人机交互界面的Labview应用程序。

e.JPG


    C8051微控制器的程序流程图如图3所示,配合硬件设置好PCA、ADC等功能的初始化后,直至接收计算机发送的信息,便开始读取CCD的数据,并存储到XDATA空间当中。结束一周期的数据的采集则关闭A/D转换,并判断计算机发送的信息里要求发送整个波形还是进行位置判断(本设计还包括一个判断极值的功能,为位置传感留下了接口),若是前者,则将所有的数据发送到串口的缓存中;若是后者,则判断山转换数据的最大值,再将最大值的位置信启、发送至串口,进行完一系列的过程后,则重新开始采集,依此循环。

f.JPG


    Labview采用图形化的G语言进行编程,完成人机交互界面软件的功能。该软件可以实现整个波形图和位置信息的实时采集,历史数据的保存和读取,以及整个系统的开始、停止和复位等控制。图4是Labview的程序框图。

4 实验结果
4.1 电路板实物图
    本方案已经完全实现,经测试,效果良好,可满足基本的科研检测或演示教学任务,以下是已经制板成功的电路板。

a.JPG

[page]

4.2 单缝衍射测试
    当光经过细小的单缝,缝宽和光源的波长相当的时候,会产生明显的衍射现象,即光会改变直线传播,并按照一定的规律进行传播。理想状况下的单缝衍射,光屏会出现特定的光谱,中间条纹最亮,向两边逐渐减弱,同时会出现完全没有光的暗纹。图6即测试图样,上半部分是采集的电压值经定标后对应的光强波形图,与理论完全一致;下半部分是利用Labview的二维光强控件对真实情况的模拟,与肉眼观察的图样一致。

b.JPG



5 结束语
    本文提供了一套完整的用单片机驱动采集CCD信号的方案,对软硬件都做了详细的介绍。其新颖之处是通过不占用内存的PCA配合D触发器和定时计数器完成驱动脉冲的产生。综上所述,C8051f020单片机能完成这项任务在于其支持一个16位的PCA模块,2个12位以上的定时计数器,2k以上的内部数据RAM,一个8位的多种触发方式的高速ADC以及UART串口。任何一个具有同样模拟外设的微控制器都能完成此方案,并且其中PCA模块可以用有源晶振代替,自带的RAM不足,完全可以用外部存储器补充,而8位ADC芯片在市场也很多,大多数单片机也都具备12位以上的定时计数器,所以这个方法完全可以推广应用,是一种普遍适用的应用方案。

关键字:C8051F020  线阵CCD  Labview 引用地址:基于单片机的线阵CCD驱动及采集系统的设计

上一篇:单片机与FPGA实现等精度频率测量和IDDS技术设计方案
下一篇:基于51式单片机的音频驱鼠器设计

推荐阅读最新更新时间:2024-03-16 13:02

NI LabVIEW FPGA硬件新增仪器级I/O
美国国家仪器有限公司(National Instruments,简称NI)近日针对PXI平台,推出了一个全新的、开放式的、基于FPGA的产品系列。NI FlexRIO系列产品是工业领域首款成熟商用现成产品,它为工程师们提供了同时结合高速、工业级I/O和NI LabVIEW FPGA技术的解决方案。通过NI FlexRIO,工程师可以在基于PXI的FPGA硬件上添加自定义信号处理算法。同时,利用可互换的适配器模块,他们可以直接将FPGA连接到仪器级I/O,或者创建自定义的前端硬件以满足客户实际应用需求。利用FlexRIO的这些性能,工程师们可以在设计和测试许多复杂的电子设备时,根据需要使用在线处理、硬件在环仿真和协议识别测试等
[测试测量]
NI <font color='red'>LabVIEW</font> FPGA硬件新增仪器级I/O
基于PXI总线和LabVIEW RT的桥梁结构健康监测及预警系统实现
在桥梁规模越建越大和桥梁破坏事故频发的今天,对重要的大跨度桥梁建立一个耐用、可靠的结构健康监测及安全监控预警系统是非常迫切和必要的。但由于桥梁结构是直接暴露在交通噪声、灰尘、极端温度和海洋腐蚀性气候等恶劣环境下,要求结构健康监测及预警系统稳定、可靠、耐用和抗干扰性强。 通过在桥梁结构不同位置以适当距离分布 NI PXI机箱和信号调理、采集模块,完成对附近各种类型 传感器 信号的稳定可靠采集。各个采集站的PXI机箱均与 GPS 时钟同步信号接收器相连,以实现远距离间的各个信号通道的高精度同步。在软件层面上,用NI公司的LabVIEW平台及 LabVIEW RT模块来完成整个可靠 数据采集 系统及上位机监控程序的开发。 NI公司的
[测试测量]
基于PXI总线和<font color='red'>LabVIEW</font> RT的桥梁结构健康监测及预警系统实现
基于C8051F020单片机的采集系统的设计
引言 随着我国铁路向高速、高密、重载、电气化方向迈进,区间闭塞设备尤其是移频自动闭塞系统得到了迅速的发展,ZPW-2000R型无绝缘移频自动闭塞系统也因此得到了广泛的推广应用。为保证ZPW-2000R型无绝缘移频自动闭塞系统能可靠安全的运行,随移频自动闭塞系统配套,提供了系统维护机,以对系统的运行状态进行全天候监视,方便维护人员及时发现故障,并尽快排除故障,保证安全。本文介绍的采集系统正是为监测ZPW-2000R型无绝缘移频自动闭塞系统维护机的主要设备提供接口。 l ZPW-2000R型无绝缘移频自动闭塞系统简介 ZPW-2000R型无绝缘移频自动闭塞系统分室内设备和室外设备两部分。室内设备包括发送器、功放器、接收器、滤波器、
[单片机]
基于<font color='red'>C8051F020</font>单片机的采集系统的设计
基于Labview的相关滤波器的设计
  1 引言   在目前的测试领域中,越来越广泛地利用相关检测的方法进行滤波。利用相关滤波可以方便地从复杂的待测信号(包括有用信号、直流偏置、随机噪声和谐波频率成分等)中分离出某一特定频率的信号。在数字技术迅速发展以后,相关滤波也经常利用A/D板对信号采样后,在计算机中实现,成为数字滤波的一种形式。本文设计了一种实现相关滤波的方法,这是相关分析在测试技术中的一个典型应用。图l所示为相关滤波器的典型框图。   Labview是美国国家仪器公司推出的一种基于“图形”方式的集成化程序开发环境,是目前国际上惟一的编译型图形化编程语言。在以PC机为基础的测量和工控软件中,Labview的市场普及率仅次于C++/C语言。Labview
[测试测量]
虚拟仪器在位移测试系统中的应用
位移测试技术在工业生产中有着广泛的应用。位移检测是机械量检测的基础,将机械量转化成位移量来检测是机电一体化技术的重要组成部分之一。对位移的检测不仅为提高产品质量和生产安全提供了重要数据,同时也为其他参数的检测提供了基础。在液压试验台中,传统的静态电液测量控制方式无法满足现在液压系统在性能、操作、在线监测和故障诊断方面的有求,所以在线监测以及分析系统的开发显得尤其重要。为了保证系统的稳定、准确以及低事故运行,本文开发了位移测试系统,能够实时显示其位移波形兵,还能够对其进行信号处理。 1 虚拟仪器及LabVIEW介绍 虚拟仪器(简称VI)由硬件设备与接口、设备驱动软件和虚拟仪器面板组成。通过底层设备驱动软件与真实的仪器系统进行通
[测试测量]
虚拟仪器在位移测试系统中的应用
采用C8051F020设计的嵌入式测试仪
  0 引言   测控技术的不断发展,将嵌入式操作系统应用到测控领域,从而实现在线实时测试已经成为一种发展趋势,而且越来越多的工业现场对各种测试仪器的需求不断增高,希望测试仪器能够向在线实时测试方向发展。基于这些需求,本文给出了基于C8051F020控制的测试仪键盘显示部分的设计方案。在整个嵌入式测试系统中,本部分只是作为下位机,并通过RS485总线接口与上位机进行通信,从而将接收到的测试数据根据控制命令的要求在显示器中予以显示,同时将测试人员发送的各类请求信号回送给上位机以对测试数据进行一定的处理。    1 系统硬件设计   本系统的硬件由MCU模块(C8051F020)、电源模块、显示模块(OCM320240K)、矩阵键
[测试测量]
采用<font color='red'>C8051F020</font>设计的嵌入式测试仪
labview Nugget之如何获取数据类型的取值范围
   Labview 支持的数据类型种类繁多,其中整型数是种类最多的,包括U8、I8、U16、I32等等。   对于每一种特定的整型数,都对应这特定的取值范围,比如U8的最大值为255,最小值为0,所以U8的取值范围是0-255。   今天我们要讨论的是如何获取整数数据类型的取值范围的方法:   一、计算法   我们知道U8是由一个字节(8位)构成的,U16是由2个字节(16位)构成的,以此类推,U64由8个字节构成(64位)。因此对于整型无符号数的取值范围很容易计算出来,无符号整数的最小值均为0,最大值可以通过计算得到。   对于有符号数,因为有符号数的最高位表示数值的符号,所以对于N位整型数,它能表示的最
[测试测量]
<font color='red'>labview</font> Nugget之如何获取数据类型的取值范围
基于模糊控制的便携式心电监护仪的实现
目前,以采集心电信号、分析和诊断为主的心电监护系统已经得到了广泛的应用,对于心脏系统疾病的预防、诊断发挥了很大的作用。但是此类心电监护仪只能是在病人静态或者病人要在特殊的情况下才能使用,对心脏病人的要求太高特别是心脏病疑似病人和早期的心脏病患者,影响他们正常的工作生活;而另一类便携式心电监护仪,其24小时可以监护,但是其存储需要大量的空间,对于心电信号的回放也需要大量的时间,鉴于以上两个问题,本文设计基于模糊控制的便携式心电监护仪。他在克服以上两个问题的同时也突破以往在线诊断疾病的单值处理,能够更加准确地判断心电信号正、异常实现及时发出报警。 1 系统总统设计 1.1 系统设计目标 根据心电信号特征、生物信号处理系统和现代心
[单片机]
基于模糊控制的便携式心电监护仪的实现
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved