基于8位MCU实现电机和PFC控制

发布者:SerendipitySoul最新更新时间:2012-09-27 来源: 21ic 关键字:8位MCU  电机  PFC控制 手机看文章 扫描二维码
随时随地手机看文章

  印度政府鼓励市民使用高能效的家用电器,以最大限度地降低本国的人均耗电量。众多非节能型家用电器,使得年均耗电量有望呈指数增长。为了提高向住宅、办公楼和工厂输送电力的电网的功率效率,降低其功率损耗,许多设计机构都开始考虑在其最新研发的设备中采用功率因数校正(PFC)技术来实现现代化电机驱动。因此,由于近年来电网传输线路中出现了高度非线性负载,PFC成为了电机控制驱动中的重要特性。

  实现高能效电机设计的途径有多种。英飞凌公司推出了经济划算的高功率因素开发平台。通过将无传感器FOC和PFC控制集成到一个8位单片机XC836上,可以降低设备的总功耗,节约高昂的电费。本技术论文描述了全新高压无刷直流风扇电机驱动和PFC控制开发平台的详尽设计实例和实施技术。

  图1所示为"有功功率"负载的功率耗散。由于其电抗性而只是被吸收到负载中并送还的功率,被称为"无功功率"."视在功率"是交流电源的度量标准,是RMS电流与RMS电压的乘积。根据上面的等式,功率因素是有功功率与视在功率之比,因此,功率因素越小,则意味着电力的利用率越低。功率因素小于1,且尖峰负载造成谐波电流的设备的耗电量更高。也就是说,这种设备未能优化利用所供应的电力。像风扇和泵等家用电器的电机类似于感性负载。其电流的相位滞后于电压,根据相位角的余弦值,PF小于1.这将影响家用电器设备的可靠性、性能和经久耐用性。譬如,未实现PFC控制的典型PMSM风扇电机的PF约为0.45.

图1:功率三角函数

图1:功率三角函数。

  图2所示为在整流桥与大电流电容器之前加装开关器件的PFC控制实现。由于PFC MOSFET要求12V开关电压,因此在MCU与MOSFET 之间加装了4只充当电平移动二极管的晶体管。借助简单的外接硬件电路,可以用更新、更高效的电机驱动应用来替换低效率的电机驱动应用。在这个平台中,英飞凌引入了直接、简单的软件临界导通模式(CRM)PFC控制,相比于分立式PFC芯片解决方案,前者要求单片机提供更多资源。

图2:整流后的VDC(a);软件PFC控制VDC(b)。

图2:整流后的VDC(a);软件PFC控制VDC(b)。

  图3所示为英飞凌提供的关键硬件器件。专用PFC硬件被设计为整个平台的一个组成部分。PFC硬件同AC-DC功率级和开关电源CoolSET控制器一并构成电源,以驱动三相门驱动器、MOSFET、XC836 MCU等器件。本文所述开发平台将XC836单片机用作微处理器。这个开发平台也可采用XC800家族的其他成员,并可支持脉宽调制器(PWM)、快速模数转换器(ADC)和高性能16位矢量计算机(CORDIC+MDU)。

图3:三相FOC电机驱动开发平台,实现了基于软件的PFC控制。

图3:三相FOC电机驱动开发平台,实现了基于软件的PFC控制。

  这个开发平台还为客户提供了一种利用FOC技术来评估永磁同步电动机(PMSM)控制应用的备选方法。此外,该开发平台也专门设计为可用于评估英飞凌单片机的实时功能的性能。

  FOC是用于操作电机的技术,可以在任何速度实现平稳的高能效运行。利用FOC技术,可以大幅提高电机的能效,从而降低功耗,减轻噪声,提供卓越的扭矩动态。诸如风扇、空气泵等等成本敏感型设备通常要求实现无传感器控制。然而,利用流经电机线圈的电流提供的信息,可以估算出电机的电位。英飞凌目前推出的这个开发平台就实现了双并联电阻检测方法。

  图4所示为无传感器FOC和PFC控制算法的简化框图。FOC方法生成的三相正弦信号允许轻松控制其频率和幅度,从而最大限度地降低电流,提高能效。其基本思路的核心是将三相信号变换为两路转子信号,反之亦然。在转子参考系中,电流是静止的,易于控制。反向矢量旋转致使控制电压旋转起来。从正交定子两相坐标系(α-β坐标系)中,得出通量估算器的输入信号。输出信号代表了转子角度。与此同时,PFC的控制结构被划分为3个环路:Vdc控制环路、Iac检测控制环路和Vac输入检测环路。通过改变电流幅度信号的平均值来控制Vdc.Iac决定了PWM负载周期脉冲。倍增Vac,以使得Iac具备与输入电压波形相同的波形。电流信号与Vac应当尽可能匹配,以实现高PF.

图4:无传感器FOC和PFC的简化框图。

图4:无传感器FOC和PFC的简化框图。

  由于整个平台都由XC836控制,因此重要的是理解低成本单片机的特性和外设适用于该应用。开发平台所用的外设旨在执行:计算矢量旋转和变换,如派克变换;提供16位分辨率,以生成高精度空间矢量PWM信号;控制空载时间,最大限度地减轻硬件工作量;同时对多个模拟通道进行取样以执行故障防护的方法;功能强大的电机控制外设集--CAPCOM6和10位模数转换器。

  此外,该平台经专门设计,可利用PFC控制来驱动PMSM吊扇电机,并满足下例性能要求:典型交流电源输入范围(150~230VAC);PFC最低为0.91@230VAC;功耗不足常规吊扇的1/2;系统总功耗不到31W@360rpm;直接替代市场上的常规吊扇;吊扇转速各异。

  简而言之,这个开发平台旨在缩短具备高PF的高能效电机控制产品的上市时间,降低噪声,提高系统可靠性。目标应用为家用电器,如吊扇和各种类型的工业电机控制应用。

关键字:8位MCU  电机  PFC控制 引用地址:基于8位MCU实现电机和PFC控制

上一篇:基于单片机的电子温度报警器设计制作总结
下一篇:基于单片机的硬件电路设计原理和工程应用方案

推荐阅读最新更新时间:2024-03-16 13:09

内电流环不是电机恒电流控制模式的电流闭环
1、我们说调速电机,有两种基本调速方式,一种是速度闭环恒速调速方式,他可以获得恒定速度和机械硬特性; 2、我们说调速电机,有两种基本调速方式,另一种是“电流闭环”恒转矩调速方式,他可以获得恒定转矩和机械软特性;   3、不管是直流调速电路,还是交流调速电路,一样都有速度闭环和电流闭环两种控制模式!   4、在任何情况下,“速度闭环”和“电流闭环”不可能同时工作,因为同一个负载,你不能给定它的速度,右给定它的电流!   5、“征”给的直流电机双闭环调速控制模式,实际是速度闭环控制模式,也就是这个电机的速度是恒定的;   6、“正”给的直流电机双闭环调速控制模式,这个内电流环不是电机恒电流控制模式的电流闭环,也就是说
[嵌入式]
美国微芯推出新电感式位置传感器 专为EV电机控制应用设计
电机控制系统的开发人员正在积极使用电感替代品取代霍尔效应位置传感器和旧的磁性旋转变压器解决方案,以避免使用昂贵的磁铁和其他基于变压器的重型结构,而电感产品可以集成到简单、紧凑的印刷电路板(PCB)。据外媒报道,美国微芯科技公司(Microchip Technology Inc.)宣布推出专为EV电机控制应用而设计的LX34070 IC,将广泛的感应式位置传感器系列扩展到EV电机控制市场。 图片来源:美国微芯科技公司 微芯混合信号和线性模拟业务部副总裁Fanie Duvenhage表示:“该LX34070电感式位置传感器可实现更轻、更小、更可靠的电机控制解决方案,满足严格的安全要求、降低整体系统成本,并且可以在汽车直流
[汽车电子]
美国微芯推出新电感式位置传感器 专为EV<font color='red'>电机</font><font color='red'>控制</font>应用设计
东芝将为多功能一体机和打印机等电机控制应用提供新型微控制
东芝公司今天宣布,该公司已经为多功能一体机和打印机等设备的电机控制应用推出了基于ARM Cortex™-M4F内核的新TX04系列微控制器:“TMPM462F15FG”、“TMPM462F10FG”、“TMPM461F15FG”和 “TMPM461F10FG”。样品将从2013年11月开始提供, 预计到2014年春季开始批量生产。 开发多功能一体机和打印机等设备的尖端电机控制应用,要求微控制器拥有大容量闪存ROM、多个通信通道和内置高分辨率传感器的接口。 即将推出的新型微控制器最多可整合1.5Mbyte闪存ROM、193Kbyte SRAM、20个串行接口通道和1个20通道12位高分辨率模拟/数字转换器。这确保通过单个
[单片机]
Zynq-7000 EPP: 工业电机控制应用
Zynq™-7000 EPP 实现了高性能与高灵活性的独特组合,能够充分满足当前及未来电机控制系统在高级处理和集成方面的要求。 设计人员可加快产品投放市场的时间,同时支持系统内置的可编程性,进而确保产品满足未来应用需求; Z-7010 与 Z-7020 EPP 器件之间的可扩展性使客户能够推出捆绑式产品解决方案,从而仅使用单个平台即能支持各种不同的电机类型; Zynq-7000 EPP 器件拥有电机控制(功能强大的处理器、外设、模数转换器)所需的所有组件,可为未来更加环保的工业解决方案提供低成本的集成型解决方案; 处理系统与可编程逻辑的紧密集成,能在单个器件中满足实时工业网络接口和电机控制硬件加速器的高带宽、低时延要求。
[工业控制]
Zynq-7000 EPP: 工业<font color='red'>电机</font><font color='red'>控制</font>应用
磁钢厚度对电机性能的作用分析
磁路和电路类似,磁钢和电源是可以类比的,只增加厚度,剩磁对应的磁通不变,但是内磁阻变大,当外磁路磁阻不变时,外磁路的磁通会变大。 关于退磁:磁铁对应磁动势增大,内磁阻增大,相同的退磁磁势下,磁通小,抗退磁能力强。 弱磁性能如退磁分析一样,弱磁困难。另一方面,d轴磁阻大,Ld小,弱磁困难。 反电势增大,转矩系数增大,铜耗降低,铁耗不好说。 成本增加严重。 齿槽转矩:气息磁密波形不变的情况下,磁能对角度的导数加大,齿槽转矩增大。 反电势波形:一般来说齿部磁密饱和含三次谐波,反电势波形变平,转矩波动加大。 找的一个电机模型,ipm结构,参数化电机磁钢厚度,表现如下: 气隙磁密随磁钢厚度变化的关系 01 气隙磁密随磁钢厚度
[嵌入式]
磁钢厚度对<font color='red'>电机</font>性能的作用分析
磁直流电机怎么判断好坏 永磁直流电机是有刷还是无刷
  永磁直流电机怎么判断好坏   永磁直流电机坏了通常会出现以下一些状况:   电机无法转动或转动缓慢:如果电机无法转动或转动缓慢,可能是由于电机内部损坏,或是机械部件卡死或磨损造成的。   异响或振动:如果电机运转时发出异常响声或振动,可能是由于轴承磨损、齿轮松动或齿轮磨损等原因造成的。   发热过多:如果电机在运转时发热过多,可能是由于绕组短路、轴承摩擦等原因造成的。   外观有损伤:如果电机外观有明显的损伤,如电机壳体变形或裂缝、轴承松动或损坏等,也说明电机可能存在问题。   因此,判断永磁直流电机好坏的方法主要包括以下几个步骤:   外观检查:检查电机的外观是否有明显的损伤或变形。   测试电机性能:通过测试电机的性能,如
[嵌入式]
三相全波无刷电机的位置检测
在三相全波无刷电机的旋转原理中,介绍了三相全波无刷电机通过三个线圈中的驱动电流切换实现旋转的原理。接下来将介绍三相全波无刷电机的驱动方法,但在此之前会先介绍三相全波无刷电机的位置检测方法,因为在实际的三相全波无刷电机驱动中,需要检测旋转的永磁体的位置。 位置检测的方法主要有两种。一种是使用传感器的方法,这种方法需要使用霍尔元件的电压。虽然在上一篇文章中用来说明旋转原理的图中没有直接解释,但是标出了H1、H2和H3霍尔元件(传感器)。另一种是检测各线圈的感应电压的方法,由于这种方法不使用传感器而被称为“无传感器方法”。 使用霍尔元件的位置检测(有传感器) 使用霍尔元件(传感器)检测旋转的永磁体位置时,将霍尔元件的安装位置设置在
[嵌入式]
三相全波无刷<font color='red'>电机</font>的位置检测
变形耦合发电机混沌系统的追踪控制
摘 要:针对变形耦合发电机混沌系统的结构特点,设计统一形式的非线性追踪控制器。根据非线性系统的线性化稳定理论,对系统同步误差稳定性进行分析和证明。这里所设计的控制器可以实现变形耦合发电机系统的状态变量与任意给定参考信号的广义同步。以追踪常值信号、周期信号和混沌信号为例,进行数值仿真,进一步表明该控制方法的有效性。 关键词:变形耦合发电机;追踪控制;广义同步;非线性控制器 0 引 言 混沌系统的控制和同步是当前自然科学基础研究的热门课题,它在通信、信息科学、医学、生物、工程等领域得到了广泛的应用,各种控制和同步方法也应运而生。在混沌控制研究中,追踪问题是研究的一个热点。追踪问题即通过施加控制使受控系统的输出信号达到事先给定的参
[工业控制]
变形耦合发<font color='red'>电机</font>混沌系统的追踪<font color='red'>控制</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • 学习ARM开发(16)
    ARM有很多东西要学习,那么中断,就肯定是需要学习的东西。自从CPU引入中断以来,才真正地进入多任务系统工作,并且大大提高了工作效率。采 ...
  • 学习ARM开发(17)
    因为嵌入式系统里全部要使用中断的,那么我的S3C44B0怎么样中断流程呢?那我就需要了解整个流程了。要深入了解,最好的方法,就是去写程序 ...
  • 学习ARM开发(18)
    上一次已经了解ARM的中断处理过程,并且可以设置中断函数,那么它这样就可以工作了吗?答案是否定的。因为S3C44B0还有好几个寄存器是控制中 ...
  • 嵌入式系统调试仿真工具
    嵌入式硬件系统设计出来后就要进行调试,不管是硬件调试还是软件调试或者程序固化,都需要用到调试仿真工具。 随着处理器新品种、新 ...
  • 最近困扰在心中的一个小疑问终于解惑了~~
    最近在驱动方面一直在概念上不能很好的理解 有时候结合别人写的一点usb的例子能有点感觉,但是因为arm体系里面没有像单片机那样直接讲解引脚 ...
  • 学习ARM开发(1)
  • 学习ARM开发(2)
  • 学习ARM开发(4)
  • 学习ARM开发(6)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved