MC9S12DG128的路径识别的智能车系统设计

发布者:堕落的猫最新更新时间:2012-10-19 来源: 21IC 关键字:MC9S12DG128  路径识别  智能车系统 手机看文章 扫描二维码
随时随地手机看文章

引言:随着控制技术及计算机技术的发展,智能车系统将在未来工业生产和日常生活中扮演重要的角色。本文所述智能车寻迹系统采用红外反射式光电管识别路径上的黑线,并以最短的时间完成寻迹。通过加长转臂的舵机驱动前轮转向,使用符合PI算法的控制器实现直流电机的调速。为了使智能车快速、平稳地行驶,系统必须把路径识别、相应的转向伺服电机控制以及直流驱动电机控制准确地结合在一起。

1 硬件设计

本系统硬件部分以飞思卡尔公司的16位微处理器MC9S12DG128为控制核心,由电源模块、主控制器模块、路径识别模块、车速检测模块、舵机控制模块和直流驱动电机控制模块组成。系统硬件结构如图1所示。

 1.jpg


1.1 主控制器模块

本系统主控制器模块采用的MC9S12DG128主要特点是功能高度集中,易于扩展且支持C语言程序设计,从而降低了系统开发和调试的复杂度。

1.2 电源模块

本系统由7.2V/2000mAh的Ni-cd蓄电池组直接供电。鉴于单片机系统的核心作用,主控制器模块采用单独的稳压电路进行供电;为提高舵机响应速度,将电源正极串接一个二极管后直接加在舵机上;电机驱动芯片MC33886直接由电源供电。通过外围电路整定,电源被分配给各个模块。

1.3 路径识别模块

路径识别模块采用收发一体的红外反射式光电管JY043作为路径的基本检测元件。本系统选用11个JY043按“一”字形排列在20cm长的电路板上,相邻两个光电管之间间隔2cm。因为路径轨迹由黑线指示,落在黑线区域内的光电二极管接收到的反射光线强度与白色的不同[2],所以根据检测到黑线的光电管的位置可以判断行车方向。光电传感器寻迹的优点是电路简单、信号处理速度快。在不受外部因素影响的前提下,光电管能够感知的前方距离越远,行驶效率越高,即智能车的预瞄性能越强[3]。[page]

1.4 车速检测模块

车速检测模块采用韩国Autonics公司的E30S-360-3-2型旋转编码器作为车速检测器件。该旋转编码器硬件电路简单、信号采集速度快,360线的精度足以满足PI控制算法调节的需要。旋转编码器与直流驱动电机通过齿数为1:1的两齿轮连接在一起,所以智能车车轮转动一圈即可以用360个脉冲表示。因此一定时间内单片机累加器获得的脉冲数值可以用来表示车速,并可直接作为控制器参数。图4为车速检测模块硬件电路图。

 zfa_13058582661516.jpg


1.5 舵机控制模块

本系统使用SANWA SRM102型舵机完成智能车转向。舵机属于位置伺服电机,控制信号是MC9S12DG128单片机产生的PWM信号。舵机自身硬件特性决定:在给定电压一定时,空载和带载时的角速度ω分别保持恒值,而线速度υ=ω?R,正比于转臂的长度R。当舵机所需转动幅度一定时,长转臂要比短转臂转动的角度小,即响应更快。如图5所示,对于转臂1和2,当R1θ2。因此对于相同的角速度ω,可得转臂响应时间t1>t2。显然利用舵机的转距余量可以提高系统整体的响应速度[4]。

 5.jpg


智能车在行驶过程中,舵机的响应时间决定着系统的稳定性及快速性。为了减小舵机的时滞现象,充分利用舵机的转矩余量,本系统采用了以下三种方法:

(1) 提高舵机工作电压,使其工作在额定电压之上,从而减小舵机的响应时间;

(2) 将舵机转臂加长至3.5cm,充分利用转矩余量;

(3) 将两个8位PWM寄存器合并为一个16位PWM寄存器,将舵机的PWM控制周期放大至2000,从而细化PWM控制量,使转臂变化更加灵活、均匀。

[page]

1.6 直流驱动电机控制模块

本系统中,直流驱动电机控制模块由RS-380SH型直流电机、功率驱动芯片ULN2003、电机驱动芯片MC33886及MC9S12DG128单片机组成。

功率驱动芯片ULN2003为单片高电流增益双极型大功率高速集成电路,本系统采用了其中两组用于增强单片机输出的PWM信号的驱动能力。

其中,电机驱动芯片MC33886是单片集成的H桥元件,它适用于驱动小马力直流电机,并且有单桥和双桥两种控制方式。D1、D2为使能端,IN1、IN2为PWM信号控制输入端,OUTl、OUT2为输出端。由于智能车从直道高速进弯时需通过紧急降速来保证系统的稳定,所以电机正转时必须能够产生反向制动力矩。因此本系统选择了MC233886的全桥工作方式。

 当需要智能车减速时,PI控制器计算值为负,令PWM5输出的PWM信号占空比为零,PWM3输出的PWM信号占空比与计算值的绝对值相同,并且计算值越负,OUT2的电平高出OUT1越多,电机有反转趋势。反之,当需要智能车加速时,PI控制器计算值为正,PWM3输出的PWM信号占空比为零,PWM5输出的PWM信号占空比与计算值的绝对值相同,计算值越大,OUTl的电平高出OUT2越多,电机有正转趋势。

2 软件设计

本系统的控制方案是根据路径识别模块和车速检测模块所获得的当前路径和车速信息,控制舵机和直流驱动电机动作,从而调整智能车的行驶方向和速度。图7为系统程序流程图。

智能模型车的路径搜索算法(Line Searching Algorithm)是智能车设计中的关键部分。本系统路径搜索算法采用简单的switch语句,根据检测到黑线的光电管的位置判断舵机的偏转角度,同时给出相应的速度控制信号。

3 实验验证

智能车路径识别的关键在于快速地判断弯道并快速、准确地响应。智能车行进过程中,从长直道进入连续弯道时,由于曲率变化很小,此时转速的设定值较大,加之舵机响应时间的限制,智能车极易脱离轨迹。采用加长转臂的舵机及合理的路径搜索算法,可以增强智能车对轨迹的跟随性能。其中,粗线为所寻迹的黑线,细线为智能车实际运行轨迹。

 本文设计了一个基于飞思卡尔微处理器MC9S12DG128的智能车控制系统,实现了快速自动寻迹功能。在硬件上,该系统采用MC9S12DG128B单片机为控制核心,协调电源模块、路径识别模块、车速检测模块、舵机控制模块及直流驱动电机控制模块的工作;在控制算法上,采用路径搜索算法和类PI控制算法实现对智能车的舵机转角和电机转速的控制。此外,系统还完成了对加长转臂舵机的控制,实现了转向伺服电机与车速的配合控制。实验结果表明,该智能车系统响应快,动态性能良好,整体控制性能良好。

关键字:MC9S12DG128  路径识别  智能车系统 引用地址:MC9S12DG128的路径识别的智能车系统设计

上一篇:基于MC9S12DP256的轿车ABS/ASR集成控制系统
下一篇:基于MC9S12XS128的汽车BCM的设计与实现

推荐阅读最新更新时间:2024-03-16 13:10

智能车载治理交通拥堵 五大系统值得关注
    中国的车载系统并不像手机系统一样受重视,产业规模太小是硬伤。然而智能语音系统的出现逐渐改变这种现状。未来的车载系统必将改变人们的出行方式,甚至改变人们的生活习惯,这也就意味着,车载系统的前景非常广阔。无论以后的车载系统如何发展,其主要功能都是服务行车者,作为一个对未来有着美好憧憬的被堵人士,我们虔诚地期待着那个不堵的时代到来。      车载市场竞争激烈步入互联普及时代     根据对我国中国车载导航终端市场的调查,目前,拥有前装导航产品的汽车主要集中在进口车以及合资品牌,绝大多数基于wince嵌入式系统,无法上网;因而后装市场得以迅速发展起来,据了解,2013年,整个后装车载终端占据了车载市场超过八成的份额,这
[安防电子]
基于16位单片机MC9S12DG128智能车控制系统设计与实现
1引言 我国自2006年起举办的全国大学生“飞思卡尔杯”智能汽车竞赛融科学性、趣味性和观赏性为一体,是一项以迅猛发展、前景广阔的汽车电子为背景,涵盖了自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多个学科专业的科技创新比赛。参赛队伍在车模平台基础上,制作一个能够自主识别路线的智能车,在专门设计的赛道上自动识别道路行驶 。 本文所述的智能车就是根据比赛规则要求设计并制作而成的,该智能车控制系统采用飞思卡尔半导体公司生产的16位MC9S12DG128单片机作为数字控制器,由安装在车前部的黑白CMOS摄像头负责采集赛道信息,并将采集到的信号经二值化处理后传入单片机,单片机对信号进行判断处理后,由PWM发生模块
[单片机]
基于16位单片机<font color='red'>MC9S12DG128</font>的<font color='red'>智能车</font>控制<font color='red'>系统</font>设计与实现
一种智能车辆配电系统设计方案
各种特种车在车辆的使用中,往往也会出现漏油故障,导致润滑油和燃油的浪费,消耗专用车的动力和工作效率。所以要设计系统来解决这个问题, 基于嵌入式技术、双冗余CAN总线与LIN总线构成的车辆智能配电系统,并且能够实现整车配电系统的智能化、数字化管理。能解决目前存在的问题   1 智能配电系统的硬件设计   该配电系统分为三个部分:配电终端,智能配电管理器和车辆管理终端,如图1所示。配电终端主要是用于28 V设备的状态监控。      由于特种车辆的用电设备的功率比较小,配电终端内部采用低导通电阻的快速MOSFET来控制用电设备的通断。并且采用电流、电压检测和短路保护技术实现对用电设备状态监控、故障的自动保护和故障
[工业控制]
一种<font color='red'>智能车</font>辆配电<font color='red'>系统</font>设计方案
目博云智能车位锁系统——让车位共享更简单
目博科技正式推出最新一代 云智能车位锁系统 ,主打产品采用 NB-IoT (5G)和 RF-433MHz 通讯方式,型号分别为 MVB-SL02-NB、MVB-SL02-5G,能够实现预约停车、共享停车以及多场景的无人值守应用。 目博云智能车位锁 1. 应用场景 预约停车、共享停车 专用车位的无人值守管理 新能源充电桩 车位智能化管理 2. 产品外壳 锁体材料采用增强尼龙,替代了传统金属材质,大大提高无线收发效率,使得其对车位占用状态的判断更加准确,为车辆驶离上锁提供更加精准的数据支持。同时,锁体重量减轻,摆臂功耗更低,经测试,摆臂次数高达 4 万次,在同类产品中遥遥领先。
[汽车电子]
目博云<font color='red'>智能车</font>位锁<font color='red'>系统</font>——让车位共享更简单
传感器与智能车路径识别方式
引言 “飞思卡尔”杯全国大学生智能车竞赛是以HCS12 MCU为核心的大学生课外科技竞赛。组委会提供了一个标准的汽车模型、直流电机和可充电式电池,参赛队伍要制作一个能够自主识别路线的智能车并在专门设计的跑道上自动识别道路行驶,其中比赛限制规则之一就是传感器的总数不能超过16个。由于路径识别在本智能车控制系统中的重要地位,而路径识别结果的好坏又与传感器的选择、传感器的数量有直接关系,因此,本文针对应用于路径识别的传感器进行讨论。 图1 智能车整体实物照片 传感器概述 光电传感器与CCD/CMOS图像传感器是较为常见的应用于路径识别的传感器。光电传感器物理结构、信号处理方式简单但检测距离近。CCD/CMOS能更早感知前
[嵌入式]
基于光电传感和路径记忆的智能车导航系统的研究设计
引言   为响应教育部关于加强大学生创新意识、合作精神和创新能力的培养的号召,清华大学汽车工程系积极组队参加了第一届“飞思卡尔”杯全国大学生智能汽车邀请赛。从2005年12月开始着手进行准备,历时8个月,研制了6代基于光电传感器的路径识别方案,开发了智能车仿真研究平台,提出了基于路径记忆算法的转 向及驱动控制策略,在电源管理、噪声抑制、驱动优化等方面也都进行了研究工作,通过大量的仿真试验、道路试验和基础性能测试,开发了基于光电传感和路径记 忆的智能车导航系统,为整车系统的优良性能奠定了坚实基础。本文将从该智能车总体方案、路径识别方案选择、转向和驱动控制及路径记忆算法等方面进行介绍。 智能车总体方案 智能车系统以飞思卡
[汽车电子]
基于光电传感和<font color='red'>路径</font>记忆的<font color='red'>智能车</font>导航<font color='red'>系统</font>的研究设计
英特尔和福特搞的Mobii智能车系统是什么东东?
    如果你认为英特尔的业务还仅限于PC就大错特错了,英特尔的触角已经延伸到了穿戴设备、智能家居、汽车等领域,而且不只是提供处理芯片,在汽车领域,英特尔就和福特合作计划推出一款名为Mobii的汽车操作系统。     Mobii是Mobile Interior Imaging的缩写,意为移动内部成像,Mobii汽车操作系统主打卖点是个性化,通过摄像头来区别主人和乘客,进而对主人和乘客不同的行为进行判断并作出相应的反映,可以说,这是一款未来感十足的产品。 Mobii都能做什么?     英特尔已经和福特一起推出了一款搭载Mobii系统的原型车,这是一部福特探险者,据英特尔研究院体验解决方案架构师Tim Plowman
[汽车电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved